CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA – CEFET/RJ

Projeto do Sistema de Arrefecimento para um Motor de um Protótipo de Fórmula SAE

Iago Medina Gomides

Prof. Orientador: Rui Pitanga Marques da Silva

Rio de Janeiro Junho de 2018

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA – CEFET/RJ

Projeto do Sistema de Arrefecimento para o Motor de um Protótipo de Fórmula SAE

Iago Medina Gomides

Projeto final apresentado em cumprimento às normas do Departamento de Ensino Superior do CEFET/RJ, como parte dos requisitos para obtenção do título de Bacharel em Engenharia Mecânica.

Prof. Orientador: Rui Pitanga Marques da Silva

Rio de Janeiro Junho de 2018

G633	Gomides, Iago Medina Projeto do sistema de arrefecimento para um motor de um protótipo de Fórmula SAE / Iago Medina Gomides.—2018. x, 41f. + anexos : il. (algumas color.) , grafs. , tabs. ; enc.
	Projeto Final (Graduação) Centro Federal de Educação Tecnológica Celso Suckow da Fonseca , 2018. Bibliografia : f. 40-41 Orientador : Rui Pitanga Marques da Silva
	1. Engenharia mecânica. 2. Calor – Transmissão. 3. Permutadores térmicos. 4. Carros de corrida – Motores. I. Silva, Rui Pitanga Marques da (Orient.). II. Título.
	CDD 621

CEFET/RJ – Sistema de Bibliotecas / Biblioteca Central

Elaborada pela bibliotecária Lívia Lima CRB-7/5904

AGRADECIMENTOS

Agradeço primeiramente a Deus por me permitir essa experiência fantástica que foi a graduação, e ainda por me proteger dos perigos da capital fluminense.

Agradeço aos meus pais pela paciência com algumas reprovações e os longos anos de estudo, sem me deixarem por um segundo sequer desamparado. Ao meu pai José Márcio, e a minha mãe Maria da Consolação, pelo exemplo de determinação e fé, bom caráter, e por todos os sacrifícios que suportaram sem exigir nada em troca, apenas para que conseguisse alcançar meu objetivo.

Agradeço ao meu irmão Ian, que com sua sede de aprender, apreço ao ramo automotivo e dedicação aos estudos, foi exemplo pra mim, mesmo sendo meu irmão caçula.

Agradeço a minha melhor amiga, minha namorada Alessandra, por me apoiar em momentos de fraqueza e por compartilhar momentos de felicidades.

Logo que cheguei ao Rio de janeiro, fui acolhido pelos meus tios José Olavo e Vilma, e por seus filhos Fernando, Rodrigo e Gustavo. Agradeço-lhes por permitirem que começasse a realizar meu sonho acadêmico, e por desfrutar de seu convívio por alguns meses.

Aos meus tios-avôs Sebastião e Maria José, que me acolheram por praticamente toda a graduação em sua casa. Agradeço-lhes por fazerem a mim algo que jamais imaginei receber de alguém, além de todos os ensinamentos, e da amizade.

Agradecimentos ao CEFET/RJ e todo o seu corpo docente, pela dedicação em fazer valer a missão da instituição, ao oferecer oportunidades, onde pude me desenvolver como profissional e pessoa.

Ao professor José Paulo Vogel *in memoriam*, e aos alunos que compõem a história da Equipe Alpha de Fórmula SAE, por compartilharem do mesmo sonho, da paixão pelo automobilismo e, principalmente, por torná-lo realidade.

RESUMO

A Fórmula SAE é um projeto de carros de corrida de competição estudantil organizado pela Society of Automotive Engineers (SAE). O conceito por trás da Fórmula SAE é de uma fábrica fictícia que contrata uma equipe estudantil de engenharia mecânica para desenvolver um projeto de carro de corrida estilo Fórmula. O protótipo deverá ser avaliado segundo seu potencial para futura fabricação para o mercado alvo constituído de competidores amadores de carros de corrida de "fim de semana". Desde 2014 o CEFET/RJ participa das competições em nível nacional por meio da Equipe Alpha de Fórmula SAE, formada por alunos de graduação dos cursos de engenharia mecânica, controle e automação industrial, elétrica, eletrônica, produção e telecomunicações. Por se tratar de um carro de corrida, a Fórmula SAE exige diversas modificações das partes constituintes de um veículo. Para que o protótipo atenda as exigências da competição, adquiriu-se num leilão de motores usados um motor de motocicleta que deverá ter seu sistema de refrigeração modificado para atender as necessidades de desempenho esperados e aos requisitos da competição, o que exigirá conhecimento aprofundado da disciplina Transferência de Calor. O projeto incluirá, entre outras coisas, a fabricação e compra no mercado de componentes necessários ao bom funcionamento do motor, assim como o redimensionamento de componentes como o radiador e a ventoinha.

Palavras chave: Fórmula SAE, Sistema de Arrefecimento, Trocador de Calor, efetividade NTU.

ABSTRACT

The Fórmula SAE is a student competition racing car project organized by the Society of Automotive Engineers (SAE). The concept behind the SAE Fórmula is from a fictional factory that hires a student engineering team to develop a Fórmula-style racing car project. The prototype should be evaluated according to its potential for future manufacturing for the target market made up of amateur competitors of "weekend" race cars. Since 2014, CEFET/RJ participates in competitions at the national level through the *Alpha Fórmula SAE Team*. The engineering team consists of mechanical, electrical, production and telecommunications engineering undergraduate students. Because it is a racing car, the SAE Fórmula requires several modifications of the constituent parts of a vehicle. In order for the prototype to meet the requirements of the expected performance needs and competition requirements was acquired at a used engine auction, which will require in-depth knowledge of the discipline Heat transfer. The project will include, among other things, the manufacture and purchase in the market of components necessary for the proper functioning of the engine, as well as the resizing of components such as the radiator and fan.

Key words: Fórmula SAE, Cooling System, Heat Exchanger, NTU effectiveness.

Capítulo	o 1	Introdução	1
1.1	Mo	tivação	2
1.2	Jus	tificativa	2
1.3	Obj	jetivos	3
Capítulo	o 2	Revisão Bibliográfica	4
2.1	Me	canismos de Transferência de Calor	4
2.1	.1	Condução	5
2.1	.2	Condução em Coordenadas Cilíndricas	7
2.1	.3	Convecção	8
2.1	.4	Condução em Coordenadas Cilíndricas com Convecção	9
2.1	.5	Aletas	10
2.1	.6	Radiação	11
2.2	Esc	coamento de Fluidos	12
2.2	2.1	Número de Prandtl	12
2.2	2.2	Número de Reynolds	13
2.2	2.3	Diâmetro Hidráulico	13
Capítulo	o 3	Trocadores de Calor	14
3.1	Coe	eficiente Global de transferência de calor	15
3.2	Ana	álise de Trocadores de Calor	16
3.3	Mé	todo da Diferença Logarítmica Média de Temperatura	17
3.4	Mé	todo da Efetividade-NTU	19
3.5	An	álise de Fluxo	21
3.5	5.1	Sensores Rotativos	21
3.5	5.2	Tubo de Pitot	21
3.6	Sist	temas de arrefecimento	22
3.6	5.1	Radiador e Ventoinha	23

SUMÁRIO

3.6.2	Válvula Termostática	23
3.6.3	Bomba d'água	24
3.6.4	Reservatório de Expansão	25
Capítulo 4	Metodologia	26
4.1 Da	ados de Motor e Transmissão	26
4.1.1	Troca de Calor Motor x Água	28
4.1.2	Injeção Eletrônica – SFI-PRO6	29
4.1.3	Sensor de temperatura	30
4.1.4	Dados de Temperatura	30
4.1.5	Vazão de água	31
4.1.6	Vazão de Ar	32
4.1.7	Dimensões do Radiador	33
4.1.8	Transmissão de Velocidades	34
Capítulo 5	Resultados	35
Capítulo 6	Conclusão	39
Capítulo 7	Bibliografia	40
Anexo A –	Modelagem do motor em Ricardo Software®	42
Anexo B –	Planilha utilizada para memória de Cálculos	43
Anexo C –	Padrão de Fluxo do Sistema de Arrefecimento	45

vii

LISTA DE FIGURAS

Figura 1: Protótipo Fórmula SAE, projetado pelos alunos da EESC-USP (Site da EESC-
USP, 2016)1
Figura 2: Faixas de condutividade térmica de vários materiais nos estados sólido, líquido e
gasoso em condições normais de temperatura e pressão. (Ashcroft & Mermin,
1976)6
Figura 3: Trocador de Calor de Fluxo Cruzado (Çengel & Ghajar, 2015)14
Figura 4: Resistencia térmica associada à transferência de calor. (Çengel & Ghajar, 2015)15
Figura 5: Distribuição de temperatura para um trocador de calor de fluxo paralelo.
(Incropera & de Witt, 2007)18
Figura 6: Distribuição de temperatura para um trocador de calor de fluxo cruzado. (Incropera
& de Witt, 2007)18
Figura 7: Fator de correção para trocador de calor de fluxo cruzado e fluídos não misturados
em único passe. (Çengel & Ghajar, 2015)19
Figura 8: Gráfico de Efetividade-NTU para um trocador de calor de fluxo cruzado com
ambos fluídos sem mistura. (Çengel & Ghajar, 2015)20
Figura 9: Anemômetros de conchas, Savonius, hélice em duto, e de escoamento livre
respectivamente. (Shneider, 2003)
Figura 10: Aferição da velocidade do escoamento de um fluido em um duto fechado.
(Shneider, 2003)
Figura 11: Circuito de resfriamento de um motor automotivo (Site: Castelo Imports, s.d.)23
Figura 12: Termostato fechado (MERCEDES BENZ DO BRASIL, 2006)24
Figura 13: Termostato aberto. (MERCEDES BENZ DO BRASIL, 2006)24
Figura 14: Vista explodida da bomba d'água de um motor Honda CB600 (Honda, 2008) 25
Figura 15: Estrutura lógica para projeto de trocador de calor. (Araujo, 2014)26
Figura 16: Protótipo de Fórmula SAE da Equipe Alpha em construção27
Figura 17: Relação entre taxa de transferência de calor do motor e sua velocidade extraídos
do Software Ricardo Wave®29
Figura 18: Sensor de temperatura de água MTE 4053. (Site da InjePro, 2017) 30
Figura 19: Decodificador de sinal Spider 8 do laboratório LACTM
Figura 20: Termopar Ecil Tipo K
Figura 21: Representação gráfica da vazão de água em função da velocidade do motor 32
Figura 22: Dimensões do radiador de um FIAT 147. (Site da Auto Peças Xavier, 2008) 33

Figura	23:	Comparação entre o calor dissipado pelo motor e pelo radiador em primeira	
		marcha	6
Figura	24:	Comparação entre o calor dissipado pelo motor e pelo radiador em segunda	
		marcha	7
Figura	25:	Comparação entre o calor dissipado pelo motor e pelo radiador em terceira	
		marcha	7
Figura	26:	Comparação entre o calor dissipado pelo motor e pelo radiador com acionamento	
		de uma ventoinha	8

LISTA DE TABELAS

Tabela 1: Coeficientes de película para algumas substâncias em diversas situações	9
Tabela 2: Relação transmissão de uma motocicleta CBR600F. (Honda, 2008)	34

Capítulo 1

Introdução

No início dos anos 80 nos Estados Unidos da América foi identificada uma carência de engenheiros especializados em veículos de alto desempenho. Impulsionado pelas três maiores montadoras de automóveis daquela época, houve o surgimento da categoria de Fórmula SAE, promovida pela *Society of Automotive Engineering*, com a perspectiva de recrutar novos talentos para as equipes representantes oficiais das marcas. A partir disso, o programa Fórmula SAE é um concurso de projetos de engenharia para estudantes de graduação e pós-graduação (FSAEOnline.com, 2017).

A competição oferece aos participantes a oportunidade de aprimorar seus projetos de engenharia e habilidades de gerenciamento de projetos, aplicando teorias aprendidas em sala de aula em uma competição. O objetivo do projeto de engenharia para equipes é desenvolver e construir um carro de corrida monoposto do tipo fórmula como mostrado na Figura 1, para que seja submetido a provas estáticas e dinâmicas.

Figura 1: Protótipo Fórmula SAE, projetado pelos alunos da EESC-USP (Site da EESC-USP, 2016).

A competição começa pela avaliação de apresentações técnicas das equipes, que incluem projeto, custo e uma apresentação de marketing. Meses antes da competição, os estudantes enviam para o comitê organizador relatórios de custos, estrutura, atenuador de impacto e projeto. Os relatórios são avaliados por engenheiros especialistas, e já valem como a primeira parte da avaliação dos protótipos. Já durante a competição, nas provas estáticas, as

equipes devem demonstrar mais detalhadamente se o carro apresentado no projeto equivale ao apresentado no evento.

A competição propõe ainda provas dinâmicas a serem realizadas a partir do segundo dia do evento. Todas as provas são pontuadas de maneiras diferentes, a fim de garantir que o melhor conjunto de projeto e carro vença a competição. As etapas de competição dinâmicas são feitas para desafiar os protótipos, levando em consideração sua eficiência, durabilidade, e segurança. Por se tratarem de situações onde o conjunto de trem de força do protótipo é muitas vezes levado ao limite, faz-se necessário um estudo sobre o sistema de arrefecimento do motor do protótipo para adequação a norma imposta pela SAE Brasil, e preservação da vida útil do conjunto motor.

1.1 Motivação

Em 2013, foi criada no CEFET/RJ a Equipe Alpha de Fórmula SAE, representante oficial da instituição na categoria. A equipe foi criada com a missão de estimular o crescimento pessoal e profissional dos alunos por meio de um aprendizado diferenciado, de modo a formar profissionais de excelência para a sociedade. Em 2017, a equipe se propôs a representar pela quarta vez o CEFET/RJ na competição nacional de fórmula SAE, mas pela primeira vez levou não só um projeto, mas também um protótipo.

Apesar de não ser a primeira vez que a equipe elabora um protótipo, o sistema de arrefecimento não havia sido analisado, pois havia indefinição do conjunto motor. O sistema de arrefecimento tem grande impacto sobre o funcionamento do motor, e é um dos maiores causadores de falhas. O mau funcionamento deste sistema causa superaquecimento, provocando a oxidação do óleo lubrificante, e consequentemente aumento do atrito entre os componentes e diversos danos a todo o equipamento. A proposta deste estudo é definir um sistema de arrefecimento que se adapte as necessidades do protótipo atual, e também, que sirva de referencia e direcionamento para projetos futuros.

1.2 Justificativa

A competição da Fórmula SAE é regida por um regulamento que define padrões e características dos protótipos para impor limites ao projeto, e garantir que haja competitividade e coerência entre as equipes. Em suas características principais, os protótipos possuem sua estrutura projetada para apenas um piloto, cuja cilindrada do motor não deve ultrapassar 710 cm³ posicionado na parte lateral ou traseira do protótipo e rodas descobertas.

A parte do regulamento referente aos motores deixa algumas opções de projeto em aberto, mas limita a utilização de água como único fluido refrigerante para o motor. Se considerarmos que o motor escolhido pela equipe tem por definição do fabricante ser arrefecido por uma mistura de água e aditivo anticongelante e anticorrosivo, faz se necessário o redimensionamento do circuito de arrefecimento, para que atenda as necessidades de utilização durante a competição de Fórmula SAE.

1.3 Objetivos

Analisar o sistema de arrefecimento de um carro de competição, e buscar alternativas que o tornem capaz de manter a temperatura do motor dentro da faixa de trabalho aceitável (80-95°C), atendendo aos requisitos impostos pelo regulamento da competição.

Capítulo 2

Revisão Bibliográfica

O processo em que dois fluidos a diferentes temperaturas trocam calor sem misturarem-se, geralmente separados por um corpo sólido, ocorre em diversas situações em projetos de engenharia. Os trocadores de calor são equipamentos que possibilitam este fenômeno, e tem aplicações diversas que vão desde o condicionamento térmico em ambientes até a produção de potência (Incropera & de Witt, 2007).

Nesta seção os objetivos são apresentar metodologias de projeto para um trocador de calor, parâmetros de avaliação da eficácia e formas de prever o desempenho de um trocador de calor em condições especificadas. Além disso, uma breve descrição dos componentes do sistema será apresentada.

2.1 Mecanismos de Transferência de Calor

Até o fim do século XVIII, a natureza física do calor era praticamente desconhecida. Apesar do surgimento da termometria no século anterior e da invenção da máquina a vapor em 1712 por Thomas Savery (Dickinson, 2011) - que, sem dúvida, aguçou o interesse pelo estudo do calor - o fenômeno permanecia um enigma. Lavoisier e Laplace aventaram, em 1778, a hipótese de que o calor era um fluido imponderável, insípido, incolor, inodoro: o calórico. Toda substância, segundo eles, continha calórico (Brown, 1950).

Quando duas substâncias, a diferentes temperaturas, entravam em contato térmico, aquela que contivesse mais calórico (estivesse a uma temperatura mais elevada) cederia parte dele à outra; de modo que o calórico no final do processo era igual à soma dos dois: em outras palavras, o calórico se conservava.

A teoria calórica do calor vigorou até meados do século XIX, quando cedeu lugar à teoria energética do calor. O marco inaugural da Termodinâmica é o artigo "On the Dynamical Theory of Heat, with numerical results deduced from Mr. Joule's equivalent of a Thermal Unit, and M. Regnault's Observations on Steam, publicado em 1851 por William Thompson (Lord Kelvin) (Brush, 1983).

Mas o que dizer da transferência de calor? Como o calor se transfere de uma substância a outra? No estudo da transferência de calor, três modos distintos de transferência de calor são identificados: a condução, a convecção e a radiação. Na prática, os três modos de transferência de calor aparecem combinados, mas em trocadores de calor a radiação é

normalmente desprezada devido às temperaturas relativamente baixas dos fluidos envolvidos na troca de calor.

2.1.1 Condução

Segundo Pérez e A.M. Romulus (Pérez & Romulus., 1993) "Condução é a transferência de energia térmica entre átomos e/ou moléculas vizinhas em uma substância devido a um gradiente de temperatura. Em outras palavras, é um modo do fenômeno de transferência térmica causado por uma diferença de temperatura entre duas regiões em um mesmo meio ou entre dois meios em contato no qual não se percebe movimento global da matéria na escala macroscópica". Os mecanismos de condução do calor em sólidos, líquidos e gases tiveram de esperar o advento da Mecânica Quântica na segunda década do século XX para que se pudesse entender o caráter atomístico-molecular da transferência de calor. Descobriu-se que a estrutura cristalina dos metais cujos átomos ocupam os vértices da rede era responsável em grande parte pela transferência de energia (calor) entre eles por vibração (fônos) (Young & Freedman, 2008) (Halliday, Resnick, & Walker, 1996) (Nussenzveig, E que elétrons livres envolvendo a rede numa espécie de "nuvem" também 1981). contribuíam para a condução de calor nos metais (Ashcroft & Mermin, 1976). Em materiais isolantes (sólidos) o fluxo de calor por condução dá-se quase que exclusivamente por vibração de fônons. Já em fluidos (líquidos e gases), o transporte de energia é resultante da não uniformidade do número de choques por unidade de volume, durante seu movimento aleatório, isto é, resultado de colisões ou difusão entre as moléculas durante a interação entre moléculas. A condução em líquidos e gases é homóloga ao fenômeno da difusão molecular (lei de Fick) (Sears & Zemansky, 1973).

A lei empírica de condução de calor, baseada em observações experimentais, foi descoberta por Felix Biot, mas é atribuída a Joseph-Baptiste Fourier, devido à publicação, em 1822, de seu famoso tratado "Théorie Analytique de la Chaleur" (Brush, 1983). A lei de Fourier expressa a taxa de transferência de calor por condução, \dot{Q} , devido à diferença de temperatura (gradiente de temperatura) entre planos infinitesimalmente próximos em função da área de transferência de calor, A, e do coeficiente de condutividade térmica, κ , característica físico-química do material:

$$\dot{Q}_x = -\kappa A \frac{dT}{dx} (\text{em } W)$$
 (1a) ou $\dot{q}_x = \frac{\dot{Q}_x}{A} = -\kappa \frac{dT}{dx} \left(\text{em} \frac{W}{m^2} \right)$ (1b)

Observamos o caráter escalar da lei de Fourier. Ainda que o calor "escoe" entre duas regiões que se encontram a diferentes temperaturas necessitam dos atributos de uma grandeza vetorial. A soma de dois fluxos de calor não obedece, por exemplo, a lei do paralelogramo de forças. Contudo, se a temperatura diminui na direção x, então $\frac{dT}{dx}$ é negativo; portanto, \dot{q}_x (ou \dot{Q}_x) torna-se uma quantidade positiva por causa do sinal negativo nas equações (1 a e b). Consequentemente, o sinal menos é incluído nestas equações para garantir que seja sempre uma quantidade positiva enquanto o fluxo de calor ocorrer na direção positiva do eixo x. O que garante a não-violabilidade da 2^a lei da Termodinâmica.

Dessa forma, podemos afirmar que num motor onde elevados gradientes de temperatura são a norma, a transferência de calor por condução ocorre entre todos os seus componentes mecânicos, e deles para fluidos lubrificantes e para o arrefecedor (água de refrigeração).

A condutividade térmica κ (W.m⁻¹.°C⁻¹ ou J.m⁻¹.°C⁻¹) depende, como vimos, da natureza do material. Seu valor pode variar por um fator de até 10⁴ entre gases e metais altamente condutores como ilustrado na figura 2 abaixo.

Figura 2: Faixas de condutividade térmica de vários materiais nos estados sólido, líquido e gasoso em condições normais de temperatura e pressão. (Ashcroft & Mermin, 1976)

A condutividade térmica também varia com a temperatura. Para diversos materiais ela é desprezível em determinados intervalos de temperatura, o que não acontece com metais (bons condutores de calor). Neste trabalho, considerando as temperaturas de funcionamento do motor, a condutividade térmica será considerada invariante.

2.1.2 Condução em Coordenadas Cilíndricas

É de grande interesse em projetos de trocadores de calor o conhecimento da condução de calor em regime permanente em coordenadas cilíndricas. Isto porque a maioria dos trocadores de calor opera com tubos cilíndricos.

Suponha que haja geração de energia num sólido cilíndrico a uma taxa de g(r) cuja condutividade térmica, κ , não varie com a temperatura. Se considerarmos a condução de calor como unidimensional em regime permanente, a distribuição da temperatura T(r) será dada por:

$$\frac{1}{r}\frac{d}{dr}\left(r\frac{dT}{dr}\right) + \frac{1}{k}g(r) = 0$$
⁽²⁾

A solução de (2) é de grande interesse em trocadores de calor se o sólido cilíndrico for tratado como um tubo oco onde ocorra apenas troca de calor (sem geração de calor). Neste caso, a superfície interior do tubo em r = a e a superfície exterior em r = b poderiam, por exemplo, ser mantidas a temperaturas T_1 e T_2 , respectivamente. Consequentemente, a equação (2) se reduz a:

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0 \quad \text{em } a < r < b$$

$$T(r) = T_1 \quad \text{em } r = a \qquad (3)$$

$$T(r) = T_2 \quad \text{em } r = b$$

A solução da equação diferencial ordinária com as condições de contorno (3) é trivial e igual a:

$$\frac{T(r) - T_1}{T_2 - T_1} = \frac{\ln(r/a)}{\ln(r/b)}$$
(4)

O fluxo de calor \dot{Q} ao longo do comprimento, L, do tubo será dado por:

$$\dot{Q} = -\kappa A \frac{dT}{dr} 2\pi L \tag{5}$$

 $\frac{dT}{dr} = \frac{1}{r}C_1 \qquad \text{onde} \qquad C_1 = \frac{T_2 - T_1}{\ln \frac{b}{a}}$

como

(5) torna-se:

8

$$\dot{Q} = \frac{2\pi kL}{\ln\left(\frac{b}{a}\right)} \left(T_1 - T_2\right). \tag{6}$$

A expressão (6) pode ser escrita na forma:

$$\dot{Q} = \frac{(T_1 - T_2)}{R}$$
 (7)

onde R é denominada resistência térmica dada por

$$R = \frac{ln\left(\frac{b}{a}\right)}{2\pi kL} \tag{8}$$

ou ainda escrita numa forma mais apropriada

$$R = \frac{b-a}{kA_m} \tag{9}$$

onde

$$A_m = \frac{A_1 - A_2}{\ln\left(\frac{A_1}{A_2}\right)} \tag{10}$$

denominada área logarítmica (de troca de calor) como veremos no capítulo 3.

2.1.3 Convecção

Ao contrário da condução, a convecção necessariamente ocorre entre substâncias que se encontram em estados físicos diferentes. A transferência de energia térmica dá-se pelo movimento entre um fluido (líquido ou gás) e um sólido ou entre fluidos (líquido e gás). Do ponto de vista microscópico, observamos que tudo se passa como se houvesse transferência de energia apenas por agitação molecular (gradiente de temperatura) entre corpos que se encontram em estados físicos distintos. Do ponto de vista macroscópico, no entanto, distinguimos dois tipos de convecção: a natural e a forçada. A convecção natural é causada por forças de empuxo que resultam das variações de densidade devido a variações de temperatura no fluido. É o caso, por exemplo, de uma placa aquecida exposta ao ar atmosférico. Um gradiente de temperatura gera um gradiente de densidade na camada de ar adjacente à placa. E ao fazê-lo movimenta-o. Já a convecção forçada exige um elemento externo (ventiladores, bombas em engenharia, vento ou seus variantes em meteorologia) que promova o escoamento do fluido (White, 1984).

A transferência de calor por convecção é dada pela lei de resfriamento de Newton:

$$\dot{Q} = Ah(T_s - T_{\infty}) \tag{11}$$

A (em m) é a área de transferência de calor, T_s (em °C) é a temperatura da superfície, T_{∞} (em °C) é a temperatura no âmago do escoamento distante da superfície com o qual o fluido está em contato e h (W/m². K) o coeficiente de transferência de calor por convecção ou coeficiente de película que depende de propriedades físico-químicas do fluido. Portanto, o coeficiente de transferência de calor deve ser derivado ou encontrado experimentalmente para cada sistema analisado. A tabela 1, extraída de (Özisik, 1985), apresenta valores de h para diversas situações.

Tabela 1: Coeficientes de	película	para algumas	substâncias e	em diversas	situações
	p • m • m m	pura monta			510003000

Convecção (tipo)	<i>h</i> (kW/m ² K)		
Natural, ar	0,006-0,035		
Forçada, ar	0,028 - 0,851		
Natural, água	0,170 - 1,14		
Forçada, água	0,570 - 22,7		
Forçada da água em ebulição	5,70 - 85		
Forçada do vapor em condensação	57 - 170		
Forçada, sódio	113 - 227		
Forçada do filme de condensação em	4 000-11 000		
tubos verticais, água.			

A convecção ocorre nos motores pelo contato de suas peças com o ar ambiente, e pelos fluidos que circulam em seu interior. As peças do motor são aquecidas por convecção em contato com os gases da combustão sendo transferido por condução às partes adjacentes. O líquido de arrefecimento, que circula internamente pelo bloco do motor, retira o calor também por convecção. Parte do calor é, então, removida do fluido quando este passa pelo radiador. Por sua vez, o radiador, que nada mais é que um trocador de calor aletado, é resfriado pela corrente de ar externa.

2.1.4 Condução em Coordenadas Cilíndricas com Convecção

Para melhor representar o escoamento de um fluido aquecido no interior de um tubo cilíndrico oco, a equação (2) e as condições de contorno (3) devem ser reescritas na forma:

$$\frac{d}{dr}\left(r\frac{dT}{dr}\right) = 0 \qquad \text{em } a < r < b \tag{12}$$

$$-Ak\frac{dT}{dr} = Ah_o (T_o - T_a) \quad \text{em } r = a$$
(13)

$$+Ak\frac{dT}{dr} = Ah_i(T_b - T_\infty) \qquad \text{em } r = b \tag{14}$$

Integrando (11), vem

$$\frac{dT}{dr} = \frac{C}{r} \tag{15}$$

A partir de (12), obtemos:

$$\frac{C}{a} = Ah_o (T_o - T_a)$$

$$\dot{Q} = \frac{(T_1 - T_2)}{R} \quad \text{ou} \quad R = \frac{(T_1 - T_2)}{\dot{Q}}$$
portanto
$$R = \frac{(T_o - T_a)}{Ah_o (T_o - T_a)} \quad \text{ou finalmente} \quad R = \frac{1}{Ah_o}$$
em
$$r = a \quad e \quad R = \frac{1}{Ah_i} \quad \text{em} \quad r = b$$

em

2.1.5 Aletas

O aumento da área de troca de calor entre fluidos é sempre desejável já que o calor trocado é diretamente proporcional à área. Frequentemente isso é feito através de aletas, palhetas de metal protuberantes usinadas no corpo da peça. Comumente encontradas em blocos do motor de motocicletas, as aletas possuem geometrias as mais diversas, pois são projetadas segundo o interesse de uma determinada aplicação.

Aletas com convecção na ponta constituem a maioria das aplicações práticas. O problema da condução de calor neste caso pode ser escrito da seguinte forma:

$$\frac{d\theta(x)}{dx^2} - m^2\theta(x) = 0 \qquad \text{em} \qquad 0 \le x \le L$$

$$\theta(x) = T_0 - T_\infty = \theta_0 \qquad \text{em} \qquad x = 0 \qquad (16)$$

$$k\frac{d\theta(x)}{dx} + h_e\theta(x) = 0 \qquad \text{em} \qquad x = L$$

onde *L* é o comprimento da aleta, h_e o coeficiente de película entre a ponta da aleta e o fluido circundante e $m^2 = \frac{hP}{Ak}$ onde *P* é o perímetro. A distribuição da temperatura ao longo da palheta é dada por:

$$\frac{\theta(x)}{\theta_0} = \frac{T(x) - T_{\infty}}{T_0 - T_{\infty}} = \frac{\cosh m(L - x) + \left(\frac{h_{\ell}}{mk}\right) \sinh m(L - x))}{\cosh mL + \left(\frac{h_{\ell}}{mk}\right) \sinh mL}$$
(17)

Ao passo que o fluxo de calor,

$$Q = \theta_0 \sqrt{PhkA} \left[\frac{\sinh mL + \left(\frac{h_e}{mk}\right) \cosh mL}{\cosh mL + \left(\frac{h_e}{mk}\right) \sinh mL} \right]$$
(18)

2.1.6 Radiação

Diferentemente da condução e da convecção, a transferência de calor por radiação não exige um meio físico para propagar-se. Isto se deve ao fato de que o mecanismo responsável pela radiação são ondas eletromagnéticas de acordo com as equações de Maxwell e fótons de acordo com a teoria dos quanta de Planck (Ingram, 1973).

Em radiação, o conceito de corpo negro é fundamental. Considera-se o corpo negro como um corpo que absorve toda a radiação incidente proveniente de todas as direções, e em todos os comprimentos de onda, sem refletir, transmitir ou espalhar. Nenhum outro corpo à mesma temperatura é capaz de emitir mais radiação do que o corpo negro.

Quando a radiação é tratada como onda eletromagnética, ela pode ser emitida em todos os comprimentos de onda, de $\lambda = \epsilon \ a \ \lambda = +\infty$. Nas temperaturas encontradas na maioria das aplicações em engenharia, há predomínio da radiação emitida por um corpo nos comprimentos de onda de $\lambda = 0,1 \ a \ \lambda = 100 \ \mu m$ (Holman, 1989). Por esta razão, a faixa do espectro de comprimento de onda nesse intervalo é denominada radiação térmica.

A emissão ou absorção de energia na forma de radiação eletromagnética é um processo global; isto é, a radiação que se origina do interior de um corpo é emitida através da superfície e, inversamente, a radiação incidente sobre uma superfície penetra no meio até uma determinada profundidade.

O fluxo de radiação máximo emitido por um corpo negro à temperatura T é dado pela lei de Stefan-Boltzmann:

$$E_b = \sigma T^4 \qquad (\mathrm{em} \, \mathrm{W/m^2}) \tag{19}$$

12

T é a temperatura (em kelvins), σ é a constante de Stefan-Boltzmann e E_b é a potência emissiva do corpo negro.

Somente um radiador ideal ou corpo negro pode emitir radiação de acordo com a lei de Stefan-Boltzmann expressa pela equação. O fluxo de radiação emitida por um corpo real é dado por

$$\dot{E} = \epsilon \dot{E}_b = \epsilon \sigma T^4 \tag{20}$$

onde a emissividade ε varia entre 0 e 1.

Como a constante de Stephen-Boltzmann, $\sigma = 5,6697 \times 10^{-8}$ W/(m²K) é extremamente pequena, a contribuição da radiação em trocadores de calor pode ser desprezada. Somente temperaturas acima de 500 K teriam algum efeito no cômpito da contribuição de calor para fins de projeto de um trocador.

2.2 Escoamento de Fluidos

A utilização de mecanismos de troca de calor em equipamentos de uso comum ou industrial é largamente aplicada. Para situações de aquecimento ou resfriamento de equipamentos ou ambientes, fluidos gasosos ou líquidos são escoados através de tubos ou dutos, onde passam por seções suficientemente extensas para que haja troca de calor.

O comportamento do fluido assim como sua interação com a superfície de troca de calor exige uma atenção especial para o dimensionamento de um mecanismo e troca de calor, com foco na sua influencia no coeficiente de convecção dos fluidos, no fator de atrito, e ainda no que diz respeito ao regime de escoamento do fluido.

2.2.1 Número de Prandtl

É chamada de camada limite térmica a camada de fluido onde a variação de temperatura é significativa em direção normal ao escoamento, e sua espessura aumenta à medida que o fluido avança pela região de troca de calor (Çengel & Ghajar, 2015). Uma melhor descrição da espessura relativa da camada limite hidrodinâmica e térmica é dada pelo número de Prandtl definido pela relação entre a difusividade molecular de quantidade de movimento e a difusividade molecular térmica, como representado pela equação:

$$Pr = \frac{\nu}{\alpha} = \frac{\mu C_p}{k} \tag{21}$$

13

2.2.2 Número de Reynolds

O comportamento de um fluido em escoamento é caracterizado por linhas de corrente e movimento altamente ordenado, mantendo padrões paralelos a sua direção quando em baixas velocidades, e é chamado de escoamento laminar. Contudo, à medida que a velocidade de escoamento ultrapassa um valor crítico seu comportamento começa a apresentar movimentação caótica, isto é, flutuações de velocidade e movimento altamente desordenado, chamado escoamento turbulento. A transição entre estes estados não se dá de forma repentina.

O regime de escoamento depende a priori da razão entre as forças de inercia para as forças viscosas do fluido. A quantidade adimensional que expressa essa razão é chamada número de Reynolds, que para um escoamento externo é expressa como:

$$Re = \frac{\rho V L_c}{\mu} \tag{22}$$

onde Lc é o comprimento característico da geometria, e V é a velocidade a montante (Çengel & Ghajar, 2015).

2.2.3 Diâmetro Hidráulico

Para uma situação de escoamento interno a um tubo circular, o comprimento característico é dado pelo diâmetro do tubo. Para um escoamento que ocorra através de tubos não circulares, deve ser empregado um diâmetro efetivo como comprimento característico, conhecido como diâmetro hidráulico. Sua definição é uma razão entre a área de seção transversal do escoamento e o perímetro em contato com o fluido:

$$D_h = \frac{4A_{tr}}{P}$$

Esse diâmetro deve ser utilizado no cálculo de parâmetros como número de Reynolds, Nusselt, e fator de atrito.

Capítulo 3

Trocadores de Calor

O equipamento usado para promover a troca de calor entre dois fluidos separados por uma parede sólida é chamado de trocador de calor, segundo (Incropera & de Witt, 2007). Suas aplicações são encontradas nas mais diversas áreas, que vão desde o aquecimento de ambientes, geração de potencia, até o equilíbrio térmico de processos industriais. Para este trabalho, a aplicação será em um sistema de arrefecimento do motor de um carro de competição.

As aplicações mais comuns em motores à combustão interna são classificadas como trocadores de calor compactos, pois apresentam grande superfície de transferência de calor por unidade de volume. A densidade de área β é definida como a razão entre a superfície de troca de calor e seu volume. Em aplicações automotivas, o valor de β é próximo de 1000m²/m³. Quando são utilizados trocadores de calor compactos, geralmente trata-se de uma compensação de um baixo coeficiente de troca de calor associado ao escoamento de um gás com uma superfície maior, gerado pela utilização de aletas. Por essa razão, os trocadores de calor automotivos ar-água tem aletas fixadas na superfície dos tubos de escoamento. Outra característica importante dos trocadores de calor compactos é a utilização de escoamento de fluxo cruzado como na Figura 3, onde a direção dos fluidos é perpendicular (Çengel & Ghajar, 2015).

Figura 3: Trocador de Calor de Fluxo Cruzado (Çengel & Ghajar, 2015).

3.1 Coeficiente Global de transferência de calor

Na análise de trocadores de calor é conveniente trabalhar com o coeficiente global de transferência de calor U, que tem a mesma unidade do coeficiente de película, h, (W/m².k) (Çengel & Ghajar, 2015).

Um trocador de calor normalmente trabalha com dois fluidos separados por uma parede sólida. Sendo assim o calor do fluido quente é transferido para a parede por convecção, através dela por condução e para o fluido frio novamente por convecção. Qualquer efeito da radiação é normalmente incluído no coeficiente de transferência de calor por convecção.

O problema de transferência de calor associado ao trocador de calor pode ser tratado por resistências térmicas, análogo a um circuito de resistências elétricas, em série, em paralelo, ou misto. As resistências térmicas são expressas pelas relações mostradas na Figura 4.

Figura 4: Resistencia térmica associada à transferência de calor. (Çengel & Ghajar, 2015)

A resistência térmica total é dada por:

$$R = R_{total} = \frac{1}{h_i A_i} + \frac{\ln(\frac{D_0}{D_i})}{2\pi kL} + \frac{1}{h_o A_o}$$
(23)

Um menor coeficiente de transferência de calor gera um estrangulamento na transferência de calor. Essa é a situação criada em sistemas em que um fluido é líquido e outro é gás, nesses casos as aletas do lado do gás são utilizadas para aumentar o produto *UA* e

aumentar a transferência de calor. Para esta situação, em que o tubo é aletado de um lado, a superfície total de transferência de calor será:

$$A_s = A_{total} = A_{aleta} + A_{n\tilde{a}o\ aletada} \tag{24}$$

De acordo com Çengel e Ghajar (2012), para trocadores de calor água-ar em tubos aletados o valor do coeficiente global de transferência de calor U varia entre 30 e 60 W/m².K, com base na superfície do lado do ar.

3.2 Análise de Trocadores de Calor

O uso de trocadores de calor em soluções de engenharia é bastante comum, e a necessidade de seleção ou avaliação deles vem de diversas possibilidades, como reduzir uma temperatura para um valor específico requisitado por um processo, ou para se dissipar determinada quantidade de calor de um sistema. Análises de trocadores de calor permitem avaliar as variações da temperatura dos fluidos, a taxa de transferência de calor do trocador, bem como sua efetividade de troca térmica.

Segundo Çengel, os fluidos não experimentam grandes variações de velocidade e cota (diferença de nível), permitindo assim que as energias cinética e potencial sejam desprezadas. Outras considerações para as análises desprezam ainda a perda de calor para as proximidades médias do trocador, onde toda transferência de calor ocorre então entre os dois fluidos que circulam no trocador.

A idealização descrita nos parágrafos anteriores incorre em valores reais imprecisos; contudo são frequentemente utilizadas. A aplicação da primeira Lei da Termodinâmica é o primeiro passo para se quantificar a quantidade de calor trocado entre os fluidos. O calor cedido pelo fluido quente deve necessariamente ser o mesmo recebido pelo fluido frio:

$$\dot{Q} = \dot{m}C_{Pf}(T_{fsai} - T_{fent})$$
 ou $\dot{Q} = \dot{m}C_{Pq}(T_{qent} - T_{qsai})$ (25)

onde:

 \dot{Q} = taxa de transferência de calor [W] \dot{m} = massa específica [kg/s] C_P = calor específico [J/kg.K] T_{sai} = temperatura de saída [°C] T_{ent} = temperatura de entrada [°C] É importante ressaltar que a taxa de transferência de calor sempre será obtida com um valor positivo, e que sua direção será do fluido quente para o fluido frio, de acordo com a segunda Lei da Termodinâmica.

É conveniente para uma análise de trocador de calor utilizar do fluido quente e frio a taxa de capacidade calorífica, isto é, o produto da massa específica ou fluxo de massa e o calor específico do fluido. Esta é dada por:

$$C = \dot{m}C_P \tag{26}$$

Esta quantidade representa a taxa de transferência de calor necessária para que a temperatura do fluido sofra alteração de 1°C. Logo, na comparação entre os dois fluídos, aquele que apresentar a menor capacidade calorífica terá uma maior variação na sua temperatura, ao passo que o fluido que apresentar a maior capacidade calorífica, terá uma menor variação de temperatura ao passar pelo trocador.

3.3 Método da Diferença Logarítmica Média de Temperatura

A taxa de transferência de calor também pode ser expressa de forma análoga a lei de resfriamento de Newton, isto é,

$$\dot{Q} = UA_S \Delta T_m \tag{27}$$

onde U é o coeficiente global de transferência de calor, A_S , a área da superfície de transferência de calor, que pode ser determinada pela geometria do trocador de calor, e ΔT_m , a temperatura média entre as temperaturas dos fluidos em algum ponto do trocador de calor. A temperatura média no trocador de calor depende da orientação dos fluidos no trocador, e da direção em que os mesmo escoam.

Para uma análise onde as temperaturas de entrada e saída são conhecidas, este método mostra-se bastante eficiente. Como é esperada para um trocador de calor, a temperatura do fluido quente diminui, e a temperatura do fluido frio aumenta, porém esta nunca poderá exceder a temperatura do fluido quente, não importando o tamanho do trocador, ou a lei da conservação de energia seria violada.

Considerando o equilíbrio térmico entre os fluidos, (Incropera & de Witt, 2007) apresenta a aproximação das temperaturas dos fluidos por curvas logarítmicas, encontradas a partir da aplicação do equilíbrio térmico em cada elemento infinitesimal ao longo do comprimento do trocador. Para esta análise são assumidas as seguintes condições:

- O trocador de calor está isolado do seu meio, apenas trocando calos com os dois fluidos contemplados pelo sistema em questão;

- A condução axial ao longo dos tubos é insignificante;

- Os ciclos específicos do fluido são constantes;

- O coeficiente global de transferência de calor é constante.

Figura 5: Distribuição de temperatura para um trocador de calor de fluxo paralelo.

(Incropera & de Witt, 2007)

Figura 6: Distribuição de temperatura para um trocador de calor de fluxo cruzado. (Incropera & de Witt, 2007)

Aplicando o balanço de energia para os elementos diferenciais mostrados nas Figura 5 e Figura 6, podemos concluir que a variação adequada de temperatura para ambos os casos é a temperatura média logarítmica, ΔT_{lm} . Reescrevendo a equação $\dot{Q} = UA_S \Delta T_m$

(27), temos:

$$\dot{Q} = UA_S \Delta T_{lm} \tag{28}$$

onde

$$\Delta T_m = \frac{\Delta T_1 - \Delta T_2}{\ln(\Delta T_1 / \Delta T_2)} \tag{29}$$

Para casos mais complexos como escoamento de fluxo cruzado, com ambos os fluidos sem mistura deve-se usar um fator de correção F, multiplicado pela temperatura média logarítmica. Este fator de correção varia dependendo da geometria do trocador de calor e das temperaturas de entrada e saída dos fluidos frio e quente.

A figura abaixo representa graficamente a variação do fator F em função dos parâmetros citados:

Figura 7: Fator de correção para trocador de calor de fluxo cruzado e fluídos não misturados em único passe. (Çengel & Ghajar, 2015)

3.4 Método da Efetividade-NTU

Em algumas situações o objetivo da análise de trocadores de calor não se trata de um dimensionamento de um trocador de calor, mas de uma comparação entre algumas opções que se possa caracterizar. Quando é possível determinar as temperaturas de entrada e saída dos fluídos e suas vazões mássicas, uma vez que são conhecidas opções de trocadores de calor, quer-se então determinar as taxas de transferência de calor, e compará-las, assim como determinar se os trocadores em questão são adequados para as condições de operação desejadas.

Para eliminar um grande número de iterações na solução desses problemas como na aplicação do método MLDT (média logarítmica das diferenças de temperaturas), Kays e London apresentaram em 1965 um novo método, chamado de efetividade, com grande simplificação na análise de trocadores de calor.

A efetividade de transferência de calor definida na equação a seguir:

$$\varepsilon = \frac{\dot{Q}}{\dot{Q}_{máx}} \tag{30}$$

A taxa de transferência de calor pode ser encontrada a partir do balanço de energia já visto neste trabalho. A máxima taxa de transferência de calor, no entanto, tem algumas particularidades. Para que ela ocorra, toda a diferença de temperatura entre os fluídos quando

entram no sistema deve ser considerada, assim como a menor capacidade térmica (Cmin) observada entre os fluídos, que acarretará em uma maior variação de temperatura no respectivo fluido. Desta maneira temos:

$$Q_{máx}^{\cdot} = C_{min} \left(T_{qent} - T_{fent} \right) \tag{31}$$

As relações de efetividade de trocadores de calor envolvem tipicamente um valor adimensional chamado NTU (número de unidades de transferência), que pode ser representado pela equação:

$$NTU = \frac{U.A_s}{c_{min}} \tag{32}$$

Kays e London desenvolveram um grande numero de relações de efetividades de trocadores de calor baseado no tipo de trocador, na direção dos fluídos, e ainda pela interação térmica entre os fluídos no trocador de calor. Para o caso de interesse nesse trabalho, a efetividade pode ser obtida pelas equações:

$$\varepsilon = 1 - exp\left\{\frac{NTU^{0,22}}{c}\left[exp(-cNTU^{0,78}) - 1\right]\right\}$$
(33)

Ou ainda pelo gráfico:

Figura 8: Gráfico de Efetividade-NTU para um trocador de calor de fluxo cruzado com ambos fluídos sem mistura. (Çengel & Ghajar, 2015)

As relações analíticas de efetividade oferecem maior confiabilidade de resultados em relação aos gráficos, uma vez que a leitura de erros nos gráficos é inevitável, além de as equações permitirem análises computadorizadas dos trocadores de calor.

3.5 Análise de Fluxo

Para garantir que a análise do trocador de calor a ser realizada seja a mais próxima da realidade possível, necessita-se que todos os parâmetros sejam aferidos por instrumentos qualificados e calibrados. A vazão dos fluídos é um dos principais responsáveis pela troca térmica como visto nas equações do item 3.2. Para este estudo se faz necessária a aferição da vazão mássica de ar e de água pelo radiador.

3.5.1 Sensores Rotativos

Seu funcionamento é baseado na transformação de um movimento relativo de um rotor, submetido a um escoamento de um líquido ou gás. A figura a seguir mostra alguns tipos de anemômetros.

Figura 9: Anemômetros de conchas, Savonius, hélice em duto, e de escoamento livre respectivamente. (Shneider, 2003)

Para um anemômetro, as correntes só podem ser medidas em um mesmo sentido. Dispositivos eletrônicos ligados ao rotor contam sua rotação, e este sinal é convertido em um sinal digital para ser analisada em um meio informático.

3.5.2 Tubo de Pitot

Permite obter a velocidade de um dado escoamento a partir da medição de duas pressões: estática e de estagnação, apresentadas no material da presente disciplina, relativo à medição de pressões (Shneider, 2003). A diferença entre essas duas pressões (mostrada na Figura 10) é denominada pressão dinâmica.

Figura 10: Aferição da velocidade do escoamento de um fluido em um duto fechado. (Shneider, 2003)

3.6 Sistemas de arrefecimento

O sistema de arrefecimento tem por objetivo impedir que os elementos mecânicos do motor atinjam uma temperatura muito elevada ao contato com os gases da combustão, ou seja, controlar a temperatura ideal dentro da faixa de operação do motor (Tillmann, 2013).

O sistema de arrefecimento é comumente apresentado em dois tipos: "a ar" e "a água". Para ambos os casos, trata-se de um mesmo princípio de funcionamento, onde é forçada a circulação de um líquido através de um circuito interno ao bloco do motor. Os métodos de arrefecimento podem ser classificados por direto, ou forçado a ar.

No caso do arrefecimento direto a ar, o ambiente retira calor diretamente do motor via aletas dispostas a sua volta, que aumentam a superfície de contato com o ar. Geralmente essas aletas estão dispostas no cabeçote, mas também podem aparecer na parte externa do cárter. Para este modelo, a ventilação ocorre de forma natural, de acordo com o movimento do veículo. A eficácia deste sistema depende então de quanto o motor está sendo solicitado, e da velocidade do veículo.

Para o caso de refrigeração a água, que circula pelo bloco do motor, pela bomba d'água, e tubos, e rejeita calor ao radiador e ar atmosférico. Pelo simples contato com a parte externa dos cilindros, a água permite retirar o excesso de calor do sistema, o que resulta na manutenção da temperatura do motor com mais estabilidade. Os principais componentes deste sistema são a bomba centrífuga, que recalca a água para o motor, a válvula termostática, que regula a temperatura e estabiliza o funcionamento do motor, o radiador, que é o trocador de calor com formas de aletas ao redor de tubos, o ventilador, que força a passagem do ar pelo

radiador, e as câmaras de agua em torno dos cilindros, dos assentos das válvulas, e do cabeçote.

O sistema original de arrefecimento do motor adotado pela equipe Alpha é representado pelo esquema apresentado no Anexo C, e corresponde em quase todos os aspectos com a descrição do parágrafo anterior.

3.6.1 Radiador e Ventoinha

O radiador é um dos principais componentes do sistema de arrefecimento do liquido que será responsável por dissipar calor retirado do motor pelo líquido arrefecedor. A estrutura de um radiador é em geral composta por tubos metálicos aletados por onde o líquido refrigerante escoará. O líquido quente atinge a parte superior do radiador, e na medida em que se condensa e se resfria ao trocar calor com a corrente de ar que passa através do radiador para o reservatório inferior, onde é aspergido pela bomba d'água, mostrado na Figura 11.

Figura 11: Circuito de resfriamento de um motor automotivo (Site: Castelo Imports, s.d.).

3.6.2 Válvula Termostática

A válvula termostática ou termostato é um dispositivo mecânico responsável por bloquear a circulação do líquido de arrefecimento pelo sistema até que a temperatura de trabalho seja atingida. Este estado pode ser observado na Figura 12, onde o líquido circulará apenas pelo bloco do motor e através da bomba d'água.

Figura 12: Termostato fechado (MERCEDES BENZ DO BRASIL, 2006).

Uma vez que a temperatura do fluido supere a idealizada para o funcionamento do motor, a válvula é aberta de forma gradativa, para que o líquido possa circular pelo trocador de calor sem causar grandes variações de temperatura. A Figura 13 mostra a válvula totalmente aberta, o que permite a circulação do fluido refrigerante pelo trocador de calor, neste caso o radiador.

Figura 13: Termostato aberto. (MERCEDES BENZ DO BRASIL, 2006)

3.6.3 Bomba d'água

Para que haja circulação forçada de água no interior do motor e pelos trocadores de calor, possibilitando a troca térmica por convecção, o bloco do motor utilizado conta com uma bomba centrífuga, ligada diretamente ao eixo virabrequim do motor, e ao eixo da bomba de óleo, como mostrado na Figura 14 abaixo.

Figura 14: Vista explodida da bomba d'água de um motor Honda CB600 (Honda, 2008).

Dessa forma, tanto a circulação de água quanto a de óleo pelos sistemas são diretamente proporcionais à rotação do motor, possibilitando variar a vazão.

3.6.4 Reservatório de Expansão

Para um sistema de arrefecimento a água, como o estudado neste trabalho, as temperaturas máximas atingem valores muito próximos à temperatura de ebulição da água. Para evitar que este fenômeno ocorra, o sistema é pressurizado por válvulas de alívio à pressão de 1,3 bar, o que evita pontos de vapor no sistema, e possível cavitação na bomba d'água.

O reservatório de expansão tem função neste sistema de permitir que o volume de água aumente com a temperatura, sem comprometer os componentes do motor. As válvulas de alívio encontram-se ao mesmo nível do reservatório, garantindo assim que ao sinal de excesso de fluido no sistema, ou temperatura elevada, haja liberação do excesso de fluido para o meio externo.

Capítulo 4

Metodologia

O projeto de arrefecimento proposto neste trabalho propõe verificar se o radiador colocado à disposição do protótipo de Fórmula SAE poderia ser usado no sistema de resfriamento do motor de combustão interna instalado no mesmo. A partir de um balanço de energia térmica efetuado no radiador é possível avaliar se ele consegue dissipar calor do fluido refrigerante em quantidade igual ou superior ao calor fornecido pelo motor ao fluido. A sequencia lógica apresentada na figura 15 foi utilizada no desenvolvimento deste projeto.

Figura 15: Estrutura lógica para projeto de trocador de calor. (Araujo, 2014)

Para uma análise de um trocador de calor, sua área de troca e suas dimensões devem ser determinadas, para garantir que este atenda às necessidades do processo. A aferição dos dados de temperatura de entrada e da vazão mássica de cada um dos fluídos, e pelo menos uma temperatura de saída, o tipo de superfície e as propriedades físicas que compõem o sistema de dissipação de calor devem ser conhecidas. Quando não for possível faze-la de forma experimental, a utilização de programas de simulação pode ser empregada.

4.1 Dados de Motor e Transmissão

O protótipo de fórmula SAE da Equipe Alpha mostrado na Figura 16, utiliza para a competição de 2017 um motor de motocicleta comercializada pela Honda®, modelo CBR600F. O motor de 599 cm³, e potência máxima original de 102 CV.

Figura 16: Protótipo de Fórmula SAE da Equipe Alpha em construção.

Como parte dos desafios impostos pela SAE para a competição, uma única entrada de ar é permitida para alimentar o motor, seja lá qual for sua quantidade de cilindros ou seu deslocamento. Esta entrada deve levar a um gargalo de no máximo 19 mm de diâmetro e, então, o ar pode ser distribuído pelos cilindros.

Até a última data de edição deste trabalho, o protótipo teve dificuldades para se manter em funcionamento, o que inviabilizou a extração de dados das diversas áreas, desde a nova potência máxima após a instalação do restritor de ar, até a aferição das temperaturas nos pontos de interesse.

Como alternativa para obtenção dos valores referentes ao processo de troca de calor foi utilizada uma ferramenta computacional fornecida pela Ricardo Software®, o Wave. Este software é líder em tecnologia em desempenho de motores e NVH (sigla para ruído, vibração e aspereza, em inglês). Este pacote de simulação é utilizado mundialmente em setores da indústria, incluindo transporte automobilístico, e geração de energia para análise dinâmica de motores e gases 1D. O Wave permite que simulações de desempenho sejam realizadas com base em praticamente qualquer configuração de sistema de admissão, combustão e escape, e inclui um modelo de transmissão de velocidades para permitir a simulação completa de um veículo. Foram realizados ainda alguns cálculos analíticos em um arquivo produzido em Microsoft Excel®, baseados nas literaturas revistas ao longo deste trabalho.

Além proporcionar estimativas para os dados não coletados devido aos empecilhos operacionais para realização de experimentos com o protótipo, a utilização do Ricardo

Software auxiliou na modelagem de algumas adaptações e restrições impostas pelo regulamento da competição do Fórmula SAE, ou mesmo de modificações propostas por opção da equipe.

4.1.1 Troca de Calor Motor x Água

A partir das ferramentas oferecidas, a modelagem foi dividida em duas partes principais: admissão e escape. Para iniciar as análises, algumas informações foram inseridas no software relacionadas ao projeto da equipe Alpha, como geometria precisa dos componentes internos do motor, octanagem de combustível, pressões e temperaturas esperadas na combustão, entre outros.

Uma vez que o motor utilizado pela equipe Alpha é capaz de alcançar uma rotação máxima de 14000 RPM segundo o fabricante Honda, uma ampla gama de rotações foi abrangida nas simulações. Observa-se que quanto mais dados forem inseridos no programa, mais precisa será a simulação de funcionamento e capacidades do motor real.

O programa utilizado trabalha com análise de convergência, nas quais diversos testes e cálculos são realizados simultaneamente levando em consideração os dados fornecidos. Após análise prolongada, o sistema gera diversos valores em formato de gráficos e tabelas para verificação do sistema. Como o parâmetro principal utilizado pelo programa foi a rotação do motor, os valores gerados tem relação direta com o mesmo, e a faixa de utilização foi de 3000 a 14000rpm.

Figura 17: Relação entre taxa de transferência de calor do motor e sua velocidade extraídos do Software Ricardo Wave®.

O gráfico ilustrado pela Figura 17 mostra o calor previsto para que seja dissipado pelo motor durante seu funcionamento, que varia com a rotação e potência. A modelagem realizada via software encontra-se no Anexo A – Modelagem do motor em Ricardo Software®.

4.1.2 Injeção Eletrônica – SFI-PRO6

A SFI-PRO6 é uma injeção eletrônica programável produzida pela InjePro Automotive Technology, que gerencia de forma profissional motores de 1 a 12 cilindros com mapas de injeção e ignição completos e de alta resolução, realiza ajustes e correções individuais por cilindro de injeção e ignição por rotação e conta com um mapa completo de correção por sonda para um ajuste fino em qualquer situação de carga e rotação do motor.

Possui data logger integrado com mais de 34 canais de visualização e duas horas de gravação, faz o controle de borboleta eletrônica e motor de passo sem a necessidade de módulos auxiliares, programável em tempo real através do Tune-Up ou através do computador com o Software SFI-PRO 6.

Sua aplicação é para carros de circuito, arrancada, off road, motos, jet sky, barcos, motores estacionários, geradores de energia, enfim qualquer motor com combustão interna a etanol, metanol, gasolina e gás. (Site da InjePro, 2017)

4.1.3 Sensor de temperatura

Este sensor informa para a INJEPRO a temperatura do motor. Ele é de extrema importância para que sejam feitas as correções de injeção e ignição em todas as faixas de temperatura do motor, principalmente quando opera a frio. O sensor é muito importante para ajustes de partida do motor frio/quente. A instalação do sensor deve ser feita na saída de água do cabeçote para o radiador, de preferência no local original do sensor em carros injetados ou temperatura do painel em carros mais antigos, e em motores refrigerados a ar ou que não utilizem água, ele deve ser instalado no óleo do motor. (Site da InjePro, 2017)

O sensor recomendado pelo fabricante da injeção eletrônica, e atualmente instalado no protótipo é apresentado a seguir:

Figura 18: Sensor de temperatura de água MTE 4053. (Site da InjePro, 2017)

Para o tipo de injeção eletrônica utilizado, este sensor pode ser utilizado para o acionamento de uma eventual ventoinha posicionada junto ao trocador de calor, uma vez que a temperatura da água tenha ultrapassado os valores ideais de trabalho do motor.

4.1.4 Dados de Temperatura

A aquisição de dados de temperatura prevista para este trabalho conta com um decodificador de sinais Spider8 como mostrado na Figura 19, disponível no Laboratório de Análise de Comportamentos Termomecânicos de Materiais (LACTM). Os dados coletados são vistos em formas gráficas através de um microcomputador qualquer, cujo tenha instalado o software do fabricante.

Figura 19: Decodificador de sinal Spider 8 do laboratório LACTM.

Os sinais enviados para o decodificador são coletados por termopares, também disponíveis no mesmo laboratório. Estes são termopares Tipo K, como ilustrado na figura 20; um termopar de uso genérico. Tem um baixo custo e, devido à sua popularidade estão disponíveis variadas sondas. Cobrem temperaturas entre os -200 e os 1200 °C, tendo uma sensibilidade de aproximadamente 41µV/°C, produzidos e distribuídos pela Ecil.

Figura 20: Termopar Ecil Tipo K

Os termopares devem estar posicionados diretamente em contato com os fluidos. No caso estudado neste trabalho, os sensores deverão ser colocados na entrada e na saída do radiador, para que a variação da temperatura de cada fluido ao passar pelo trocador de calor seja registrada.

4.1.5 Vazão de água

Para que haja realização da vazão de água no sistema, é necessário que o motor esteja a pleno funcionamento, e que todas as suas faixas de rotação possam ser exploradas durante a análise. Até a data deste trabalho, a Equipe Alpha ainda encontrava problemas para garantir uma estabilidade de funcionamento do motor, impossibilitando aferições praticas de vazão.

Segundo dados do fabricante, obtidos por referencias em suas concessionarias de manutenção de motocicletas Honda ®, a vazão da bomba de água deve ser de 50 l/min quando o motor estiver a 12500 RPM. A bomba acionada mecanicamente ao eixo virabrequim do motor, um comportamento linear e proporcional às rotações do motor é esperado, e pode ser representado pelo gráfico a seguir, para o fluxo de água pela bomba d'água.

Figura 21: Representação gráfica da vazão de água em função da velocidade do motor.

4.1.6 Vazão de Ar

A aquisição dos dados de vazão de ar pelo radiador foi idealizada com o auxilio de anemômetros, posicionados na saída do radiador. Mas ao considerar o problema citado no item anterior, no qual o motor do protótipo não atingiu estabilidade de funcionamento para realização de ensaios, a vazão de ar através do radiador foi calculada analiticamente, levando em consideração as velocidades a serem atingidas pelo protótipo, e as dimensões do radiador utilizado.

Desta maneira, a vazão mássica do ar pelo radiador é dada por:

$$\dot{m} = \rho. V. Nt. St. \left(L - (Ef * Na)\right) \tag{34}$$

onde,

 ρ – densidade volumétrica do Ar [kg/m³]

V – velocidade do Protótipo [m/s]

Nt – número de tubos por linha

St – distância entre os tubos [m] L – comprimento dos tubos [m] Ef – espessura das aletas [m] Na – número de Aletas

A partir de (34) alguns cenários baseados na velocidade do protótipo e na temperatura de entrada prevista no dia da competição em Piracicaba (SP); o que permitiu a construção de gráficos de troca de calor.

4.1.7 Dimensões do Radiador

Uma das principais fontes de capitação de recursos ou matérias para a utilização em projetos de extensão é o apoio de doações e patrocínios. A aquisição num leilão de veículos usados do conjunto motriz desprovido dos equipamentos do sistema de arrefecimento obrigou a equipe a adquirir cada um dos componentes através de doações:

O radiador foi adquirido através de doação, por uma oficina automotiva ligada à equipe. O modelo em questão é originalmente equipado em automóveis da fabricante FIAT®. Produzido pela Valeo®, o radiador tem como material predominante o alumínio, que compõe os dutos de passagem de água e as aletas. Já os reservatórios de entrada e saída do radiador são fabricados em polímero polipropileno.

Figura 22: Dimensões do radiador de um FIAT 147. (Site da Auto Peças Xavier, 2008)

O radiador ilustrado na Figura 22 é composto por duas fileiras de vinte e um tubos, igualmente espaçados ao longo dos 396 mm de largura do radiador, e com 8 mm de diâmetro cada. Para aumentar a área de troca de calor, os tubos passam por duzentas aletas perpendiculares e externas, com espessura de 0,2 mm cada, e igualmente espaçadas ao longo dos tubos.

Outro ponto imposto pelo regulamento da competição delimita que qualquer componente instalado nas laterais do protótipo não deve exceder a um plano imaginário traçado entre os pontos mais externos das rodas. O radiador por sinal possui dimensões que ultrapassam este plano, uma vez que seja instalado em uma posição exatamente perpendicular a lateral do protótipo. Em virtude disto, a instalação do radiador exigiu um suporte inclinado de 30° em relação ao plano frontal do veículo.

4.1.8 Transmissão de Velocidades

Para o tipo de motor utilizado no protótipo, a caixa de marchas compartilha do mesmo óleo lubrificante. Para que este conjunto se torne compacto a ponto de ser montado em uma motocicleta, o mesmo bloco do motor é o utilizado para acomodar as árvores primarias e secundárias de transmissão de potência, cujas relações de transmissão estão na Tabela 2.

Redução primária		2,111
Redução final		2,687
Relação de transmissão	ן¤	2,750
	2 ^ª	1,938
	3ª	1,556
	4 <u>°</u>	1,348
	5ª	1,208
	6 <u>°</u>	1,095

Tabela 2: Relação transmissão de uma motocicleta CBR600F. (Honda, 2008)

Completando a transferência de potência, foi instalado um pinhão de 16 dentes, ligado a uma coroa de 60 dentes por correntes. A coroa é ligada diretamente ao diferencial, que distribui o movimento para as rodas traseiras de 13 polegadas, com pneus de dimensão 175/70 R13.

A partir destes dados, foi possível calcular as velocidades do protótipo quando operou no regime de cada uma das marchas, e utilizou-se, em seguida, os dados para o calculo da vazão de ar através do radiador.

Capítulo 5

Resultados

Obedecendo a metodologia e levando em consideração a revisão bibliográfica, pôde-se especificar um trocador de calor a respeito de sua usabilidade, diante dos parâmetros e regimes de trabalho esperados, ou ainda, utilizar-se de forma reversa da metodologia, e se escolher o trocador de calor ideal para as condições de trabalho desejadas.

A temperatura máxima atingida pelo ar no circuito do Esporte Clube Piracicabano de Automobilismo (ECPA), autódromo sede nacional da competição de Fórmula SAE, atingiu 40°C em edições anteriores. Assim, a temperatura de entrada do ar pelo radiador para efeito de cálculos, foi considerada igual 45°C, ou seja, situação extrema de calor no circuito.

Já para a parte quente do sistema, a temperatura inicial de trabalho foi considerada quando a válvula termostática está totalmente aberta, aos 95°C (Honda, 2008). Logo, considerando os valores de vazão proporcionais à rotação do motor, para a parte quente, e a velocidade do protótipo, para a parte fria, podemos calcular a máxima troca de calor do radiador em questão. Somente temperaturas acima de 500 K teriam algum efeito na contribuição da radiação em trocadores de calor, portanto nesta análise pôde ser desprezada. A Figura 23 mostra a comparação entre o calor dissipado pelo motor e pelo radiador em primeira marcha.

Figura 23: Comparação entre o calor dissipado pelo motor e pelo radiador em primeira marcha.

O gráfico mostra uma proximidade entre as curvas de geração e dissipação de calor, o que pode gerar um superaquecimento, se considerar a efetividade do radiador, e possíveis efeitos de pista, como curvas, e efeitos aerodinâmicos do próprio protótipo, mas que não puderam ser analisados neste trabalho.

É possível observar ainda que o motor continua a gerar calor quando em marcha lenta, ou seja, sem estar engrenado à transmissão de velocidades. Para este caso, sugere-se a instalação de uma ventoinha para gerar convecção forçada no radiador com o ar a uma velocidade superior a 5 m/s para evitar situações de superaquecimento.

As Figura 24 e Figura 25 abaixo mostram o comportamento da troca de calor nas marchas que terão maior utilização no circuito, devido ao traçado "travado" (termo que indica que as curvas do circuito são de ângulo agudo e com trechos de reta pequenos).

Figura 24: Comparação entre o calor dissipado pelo motor e pelo radiador em segunda marcha.

Figura 25: Comparação entre o calor dissipado pelo motor e pelo radiador em terceira marcha.

Para as condições de utilização em pista do protótipo, onde o setor responsável pela transmissão do protótipo na Equipe Alpha prevê rotação média entre 3000 e 5000 RPM, o trocador se mostra funcional, mesmo sem a ajuda de ventoinha. Contudo, para uma aplicação de uso que o motor esteja ligado, mas o veículo esteja parado, o acionamento de uma ventoinha que movimente o ar a pelo menos 5 m/s faz necessário, garantindo a integridade do motor em marcha lenta, como mostrado na figura 26.

Figura 26: Comparação entre o calor dissipado pelo motor e pelo radiador com acionamento de uma ventoinha.

Desta maneira, após a validação do uso do radiador para segunda e terceira marchas e, sendo a troca de calor proporcional à velocidade do ar, é conclui-se que seu uso é aplicável nas marchas posteriores, em que o veículo atingirá velocidades maiores.

Capítulo 6

Conclusão

Para caracterização do elemento principal de troca de calor, o radiador, os cálculos propostos neste trabalho se mostraram coerentes para a obtenção de dados de transferência de calor do sistema. Foram analisados os impactos pela variação do posicionamento do radiador na lateral do protótipo e, o impacto da variação de velocidade do motor e do protótipo no sistema de troca de calor.

É obrigatória a instalação de uma ventoinha junto ao radiador, para que não haja superaquecimento no motor em situações de funcionamento com o protótipo em marcha lenta, ou em velocidades já previstas como insuficientes para a refrigeração sem ventoinha.

As análises experimentais previstas para obtenção dos dados para alimentar os cálculos da efetividade do trocador de calor não puderam ser realizadas pela indisponibilidade do protótipo. Por se tratar da primeira vez em que o motor seria ligado pela equipe, houve grande dificuldade de se estabelecer um funcionamento estável e, consequentemente, os experimentos não puderam ser realizados.

Ficam sugeridos alguns temas para trabalhos futuros:

- Influência de escoamento laminar e turbulento, assim como a perda de carga dos fluídos quente e frio ao circular pelo sistema;

 Proposta de um novo sistema com menor volume, visando redução de peso e arrasto ao protótipo;

- Realizar modelagem do sistema de resfriamento pelo método de elementos finitos.

Capítulo 7

Bibliografia

- Araujo, E. C. (2014). Trocadores de Calor. São Carlos SP: EdUFSCar.
- Ashcroft, N., & Mermin, N. (1976). *Solid State Physics* (1^a ed.). New York: Holt, Rinehart and Winstone.
- Brown, S. (1950). The Caloric Theory of Heat (Vol. 18). American Journal of Physics.
- Brush, G. (1983). Statistical Physics and the Atomic Theory of Matter, from Boyle and Newton to Landau and Onsager. *Princeton Series in Physics*.
- Çengel, Y. A., & Ghajar, A. J. (2015). *Heat and Mass Transfer: Fundamentals & Applications* (5^a ed.). New York, NY: McGraw-Hill Education.
- Dickinson, H. W. (2011). A Short History of the Steam Engine. Cambridge University Press.
- FSAEOnline.com. (2017). Fonte: FSAE History: http://fsaeonline.com
- Halliday, D., Resnick, R., & Walker, J. (1996). *Fundamentos de Física 2* (4^a ed.). São Paulo: Livros Técnicos e Científicos Editora.
- Holman, J. (1989). Heat Tranfer. New York: McGraw-Hill International Editions.
- Honda. (2008). MANUAL DE SERVICOS CB 600 F HORNET 2008. Honda Motors.
- Incropera, F. P., & de Witt, D. P. (2007). Fundamentals of Heat and Mass Transfer (6^a ed.). Hoboken, NJ: John Wiley & Sons, Inc.
- Ingram, D. (1973). Radiation and Quantum Physics. Oxford: Oxford Physics Series.
- MERCEDES BENZ DO BRASIL. (2006). Apostila de Treinamento Técnico: Matemática e Metrologia.
- Nussenzveig, H. (1981). Física Básica (2ª ed., Vol. 2). São Paulo: Ed. Edgard Blücher Ltda.
- Özisik, N. M. (1985). *Heat Transfer: A Basic Approach*. New York: McGraw-Hill International Editions.
- Pérez, J., & Romulus., A. (1993). Thermodynamique: Fondements et applications. Paris.
- Sears, F., & Zemansky, M. (1973). *Física* (Vol. 2). Rio de Janeiro: Ed. Universidade de Brasília.
- Shneider, P. S. (2003). *Medição de Velocidade e Vazão de Fluidos*. UFRGS, Porto Alegre -RS.
- Site da Auto Peças Xavier. (2008). Acesso em 2017, disponível em Radiador Fiat 147 1.0 / 1.3 Sem Ar Condicionado Sem Transmissão Automática - Auto Peças Xavier 24 Horas: http://www.autopecasxavier.com.br

- *Site da EESC-USP*. (2016). Acesso em 02 de 07 de 2017, disponível em Escola de Engenharia de São Carlos Universidade de São Paulo: http://www.eesc.usp.br
- Site da InjePro. (2017). Fonte: SFI-PRO6 Injeção Eletrônica Programável Sequencial: http://www.injepro.com
- Site: Castelo Imports. (s.d.). Acesso em 07 de 2017, disponível em Castelo Imports Blog: http://casteloimports.blogspot.com.br
- Tillmann, C. d. (2013). *Motores a Combustão Interna e seus Sistemas*. Pelotas RS: Rede e-Tec Brasil.
- White, F. M. (1984). Heat Transfer. Massachusetts: Addison-Wesley Longman.
- Young, H., & Freedman, R. (2008). *Física II: Termodinâmica e Ondas*. (12^a ed.). São Paulo: Addison-Wesley.

Anexo A – Modelagem do motor em Ricardo Software®

tus itte 1 SPE			_		Case 3	Case 4	Case 5	Case 6	Case 7	Case 8	Case 9	Case 10	Case 11	Case 12	+
SPE			Run	Run											
1 SPE			Full load -												
	EED	rpm	15000	14000	13000	12000	11000	10000	9000	8000	7000	6000	5000	4000	
2 AFF	R		12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	
3 BDU	UR	deg	30	29	28	27	26	25.2	24.5	23.8	23	22	21	20	
4 CAS	50	deg	0	0.8	1.8	2.9	4	5.2	6.4	7.6	8.8	10	11	12	
5 Cod	olant_Head	W/m^2/K	13000	12000	11000	10000	9000	8500	8000	7500	7000	6500	6000	5000	
6 Cod	olant_Liner	W/m^2/K	3700	3500	3300	3050	2800	2500	2300	2000	1700	1500	1200	1000	
7 Cod	olant_Piston	W/m^2/K	3100	3000	2900	2600	2500	2400	2100	1900	1500	1400	1300	1100	
3 dxe	e		35	35	35	35	35	35	35	35	35	35	35	35	
9 dx1	1		25	25	25	25	25	25	25	25	25	25	25	25	
10 EV	TEMP	K	381	380	378.5	377	376	375	372.5	370	368	366	365.5	365	
1 EX	ANCHOR	deg	252.5	252.5	252.5	252.5	252.5	252.5	252.5	252.5	252.5	252.5	252.5	252.5	
2 HEJ	AD_TEMP	K	636	635	632.5	630	625	620	607.5	595	587.5	580	565	550	
idu	ur		50	50	50	50	50	50	50	50	50	50	50	50	
INT	T_ANCHOR	deg	461	461	461	461	461	461	461	461	461	461	461	461	
5 IV	TEMP	K	321	320	320	319	318	318	317	316	315	314	313	312	
5 LIN	NER_TEMP	K	620	615	608	600	597.5	595	587.5	580	575	570	555	540	
PIS	STON_TEMP	K	598	595	590	585	582.5	580	565	550	540	530	515	500	
8 T_0	cell	K	313	313	313	313	313	313	313	313	313	313	313	313	
) T_C	Coolant	K	393	394	393	393	388	383	378	373	368	362	363	363	
20 T_C	011	K	363	363	363	363	363	363	363	363	363	363	363	363	
1 thr	rottle_angle	deg	90	90	90	90	90	90	90	90	90	90	90	90	

Anexo B – Planilha utilizada para memória de Cálculos

Dados Ra	diador	
Nt	21	
NI	2	
St	0.007	m
e	0.030	m
н	0.396	m
L	0.310	m
Inclinação	0 524	Rad

Ale	etas	
Na	200	
Sf	0.00135	m
е	0.0002	m
н	0.396	
L	0.31	m

		Ar				Água					Radiador				Motor			
		m/s	°C	°C	ρ.V.Nt.St.(L-Sf)			L/min	°C	°C	kg/s		kJ/kg.K	kW/K	kW/K	kW/K	kW	kW
Marcha	RPM	Vel. Prototipo	Ti	То	μ	Ср	ρ	vzao	Ti	То	ṁ	V	Ср	Cw	Ca	Cmin	Q.	Q.
1	1000	1.38	45	95	0.056	1.007	1.109	5	95	86.6	0.080	961.5	4.212	0.337	0.057	0.057	2.8	6.8
1	2000	2.//	45	95	0.112	1.007	1.109	10	95	86.6	0.160	961.5	4.212	0.6/5	0.113	0.113	5.7	7.7
1	4000	4.15	45	95	0.108	1.007	1.109	20	95	86.6	0.240	961.5	4.212	1.012	0.170	0.170	0.5	0.0
1	5000	6.92	45	95	0.223	1.007	1 109	25	95	86.6	0.321	961.5	4 212	1.550	0.220	0.220	14.1	11
1	6000	8.30	45	95	0.337	1.007	1.109	30	95	86.6	0.481	961.5	4.212	2.025	0.339	0.339	17.0	13.5
1	7000	9.68	45	95	0.393	1.007	1.109	35	95	86.6	0.561	961.5	4.212	2.362	0.396	0.396	19.8	17
1	8000	11.07	45	95	0.449	1.007	1.109	40	95	86.6	0.641	961.5	4.212	2.700	0.452	0.452	22.6	18.5
1	9000	12.45	45	95	0.505	1.007	1.109	45	95	86.6	0.721	961.5	4.212	3.037	0.509	0.509	25.4	19.6
1	10000	13.83	45	95	0.561	1.007	1.109	50	95	86.6	0.801	961.5	4.212	3.375	0.565	0.565	28.3	21
1	11000	15.22	45	95	0.617	1.007	1.109	55	95	86.6	0.881	961.5	4.212	3.712	0.622	0.622	31.1	21.8
1	12000	16.60	45	95	0.674	1.007	1.109	60	95	86.6	0.962	961.5	4.212	4.050	0.678	0.678	33.9	22.5
1	13000	17.98	45	95	0.730	1.007	1.109	65	95	86.6	1.042	961.5	4.212	4.387	0.735	0.735	36.7	23.2
2	2000	2.96	45	95	0.080	1.007	1.109	10	95	83.1	0.080	961.5	4.212	0.337	0.080	0.080	4.0	5.8
2	3000	5.89	45	95	0.139	1.007	1.109	10	95	83.1	0.100	961.5	4.212	1 012	0.100	0.100	12.0	8.6
2	4000	7.85	45	95	0.319	1.007	1.109	20	95	83.1	0.321	961.5	4.212	1.350	0.321	0.321	16.0	9.5
2	5000	9.82	45	95	0.398	1.007	1.109	25	95	83.1	0.401	961.5	4.212	1.687	0.401	0.401	20.1	11
2	6000	11.78	45	95	0.478	1.007	1.109	30	95	83.1	0.481	961.5	4.212	2.025	0.481	0.481	24.1	13.5
2	7000	13.74	45	95	0.557	1.007	1.109	35	95	83.1	0.561	961.5	4.212	2.362	0.561	0.561	28.1	17
2	8000	15.70	45	95	0.637	1.007	1.109	40	95	83.1	0.641	961.5	4.212	2.700	0.642	0.642	32.1	18.5
2	9000	17.67	45	95	0.717	1.007	1.109	45	95	83.1	0.721	961.5	4.212	3.037	0.722	0.722	36.1	19.6
2	10000	19.63	45	95	0.796	1.007	1.109	50	95	83.1	0.801	961.5	4.212	3.375	0.802	0.802	40.1	21
2	11000	21.59	45	95	0.876	1.007	1.109	55	95	83.1	0.881	961.5	4.212	3.712	0.882	0.882	44.1	21.8
2	12000	23.56	45	95	0.956	1.007	1.109	60	95	83.1	0.962	961.5	4.212	4.050	0.962	0.962	48.1	22.5
2	1000	23.32	45	95	0.099	1.007	1.109	5	95	80.2	0.080	961.5	4.212	4.367	0.100	0.100	52.1	6.8
3	2000	4.89	45	95	0.198	1.007	1.109	10	95	80.2	0.160	961.5	4.212	0.675	0.200	0.200	10.0	7.7
3	3000	7.34	45	95	0.298	1.007	1.109	15	95	80.2	0.240	961.5	4.212	1.012	0.300	0.300	15.0	8.6
3	4000	9.78	45	95	0.397	1.007	1.109	20	95	80.2	0.321	961.5	4.212	1.350	0.400	0.400	20.0	9.5
3	5000	12.23	45	95	0.496	1.007	1.109	25	95	80.2	0.401	961.5	4.212	1.687	0.499	0.499	25.0	11
3	6000	14.67	45	95	0.595	1.007	1.109	30	95	80.2	0.481	961.5	4.212	2.025	0.599	0.599	30.0	13.5
3	7000	17.12	45	95	0.694	1.007	1.109	35	95	80.2	0.561	961.5	4.212	2.362	0.699	0.699	35.0	17
3	8000	19.56	45	95	0.794	1.007	1.109	40	95	80.2	0.641	961.5	4.212	2.700	0.799	0.799	40.0	18.5
3	9000	22.01	45	95	0.893	1.007	1.109	45	95	80.2	0.721	961.5	4.212	3.037	0.899	0.899	45.0	19.6
3	110000	24.45	45	95	0.992	1.007	1.109	50	95	80.2	0.801	961.5	4.212	3.3/5	0.999	0.999	49.9	21
3	12000	20.90	45	95	1.091	1.007	1.109	55	95	80.2	0.861	961.5	4.212	3.712	1.099	1.099	59.9	21.0
3	13000	31.79	45	95	1.290	1.007	1.109	65	95	80.2	1.042	961.5	4.212	4.387	1.299	1.299	64.9	23.2
4	1000	2.82	45	95	0.115	1.007	1.109	5	95	77.9	0.080	961.5	4.212	0.337	0.115	0.115	5.8	6.8
4	2000	5.64	45	95	0.229	1.007	1.109	10	95	77.9	0.160	961.5	4.212	0.675	0.231	0.231	11.5	7.7
4	3000	8.47	45	95	0.344	1.007	1.109	15	95	77.9	0.240	961.5	4.212	1.012	0.346	0.346	17.3	8.6
4	4000	11.29	45	95	0.458	1.007	1.109	20	95	77.9	0.321	961.5	4.212	1.350	0.461	0.461	23.1	9.5
4	5000	14.11	45	95	0.573	1.007	1.109	25	95	77.9	0.401	961.5	4.212	1.687	0.577	0.577	28.8	11
4	6000	16.93	45	95	0.687	1.007	1.109	30	95	77.9	0.481	961.5	4.212	2.025	0.692	0.692	34.6	13.5
4	2000	19.76	45	95	0.802	1.007	1.109	35	95	77.9	0.561	961.5	4.212	2.362	0.807	0.807	40.4	1/
4	9000	22.38	45	95	1 031	1.007	1.109	40	95	77.9	0.721	961.5	4.212	3.037	1.038	1.038	51.9	19.5
4	10000	28.22	45	95	1.145	1.007	1.109	50	95	77.9	0.801	961.5	4.212	3.375	1.153	1.153	57.7	21
4	11000	31.05	45	95	1.260	1.007	1.109	55	95	77.9	0.881	961.5	4.212	3.712	1.268	1.268	63.4	21.8
4	12000	33.87	45	95	1.374	1.007	1.109	60	95	77.9	0.962	961.5	4.212	4.050	1.384	1.384	69.2	22.5
4	13000	36.69	45	95	1.489	1.007	1.109	65	95	77.9	1.042	961.5	4.212	4.387	1.499	1.499	74.9	23.2
5	1000	3.15	45	95	0.128	1.007	1.109	5	95	75.9	0.080	961.5	4.212	0.337	0.129	0.129	6.4	6.8
5	2000	6.30	45	95	0.256	1.007	1.109	10	95	75.9	0.160	961.5	4.212	0.675	0.257	0.257	12.9	7.7
5	3000	9.45	45	95	0.383	1.007	1.109	15	95 or	75.9	0.240	961.5	4.212	1.012	0.386	0.386	19.3	8.6
5	5000	15.75	45	95	0.639	1.007	1,109	20	95 95	75.9	0.321	961.5	4.212	1.687	0.515	0.515	32.7	5.5
5	6000	18.90	45	95	0.767	1.007	1.109	30	95	75.9	0.481	961.5	4.212	2.025	0.772	0.772	38.6	13.5
5	7000	22.05	45	95	0.894	1.007	1.109	35	95	75.9	0.561	961.5	4.212	2.362	0.901	0.901	45.0	17
5	8000	25.20	45	95	1.022	1.007	1.109	40	95	75.9	0.641	961.5	4.212	2.700	1.029	1.029	51.5	18.5
5	9000	28.34	45	95	1.150	1.007	1.109	45	95	75.9	0.721	961.5	4.212	3.037	1.158	1.158	57.9	19.6
5	10000	31.49	45	95	1.278	1.007	1.109	50	95	75.9	0.801	961.5	4.212	3.375	1.287	1.287	64.3	21
5	11000	34.64	45	95	1.405	1.007	1.109	55	95	75.9	0.881	961.5	4.212	3.712	1.415	1.415	70.8	21.8
5	12000	37.79	45	95	1.533	1.007	1.109	60	95	75.9	0.962	961.5	4.212	4.050	1.544	1.544	77.2	22.5
5	13000	40.94	45	95	1.661	1.007	1.109	65 c	95 or	75.9	1.042	961.5	4.212	4.387	1.673	1.673	83.6	23.2
6	2000	5.47	45	95	0.141	1.007	1 109	5	30	74.0	0.060	961.5	4.212	0.337	0.142	0.142	14.2	7.7
6	3000	10.42	45	95	0.423	1.007	1.109	15	95	74.0	0.240	961.5	4,212	1,012	0,426	0.426	21.3	8.6
6	4000	13.90	45	95	0.564	1.007	1.109	20	95	74.0	0.321	961.5	4.212	1.350	0.568	0.568	28.4	9.5
6	5000	17.37	45	95	0.705	1.007	1.109	25	95	74.0	0.401	961.5	4.212	1.687	0.710	0.710	35.5	11
6	6000	20.85	45	95	0.846	1.007	1.109	30	95	74.0	0.481	961.5	4.212	2.025	0.852	0.852	42.6	13.5
6	7000	24.32	45	95	0.987	1.007	1.109	35	95	74.0	0.561	961.5	4.212	2.362	0.994	0.994	49.7	17
6	8000	27.80	45	95	1.128	1.007	1.109	40	95	74.0	0.641	961.5	4.212	2.700	1.136	1.136	56.8	18.5
6	9000	31.27	45	95	1.269	1.007	1.109	45	95	74.0	0.721	961.5	4.212	3.037	1.277	1.277	63.9	19.6
6	10000	34.74	45	95	1.410	1.007	1.109	50	95	74.0	0.801	961.5	4.212	3.375	1.419	1.419	71.0	21
6	11000	38.22	45	95	1.551	1.007	1.109	55	95	74.0	0.881	961.5	4.212	3.712	1.561	1.561	78.1	21.8
6	12000	41.09	45	95	1 922	1.007	1.109	00 65	95	74.0	0.962	901.5	4.212	4.050	1.703	1.703	05.2	22.5
0	12000	45.17	45	32	1.032	1.00/	1.109	co	32	74.0	1.042	90T'D	4.212	4.36/	1.040	1.045	92.5	23.2

Δ	Δ

Dados			Unidade		
Numero de Linhas	NI	2			
Numero de tubos por linha	Nt	21			
Comprimento tubo	L	0.31	m		
Largura do Radiador	Lr	0.396	m		
Espessura Radiador	Er	0.03	m		
Diametro Externo do Tubo	Di	0.008	m		
Distancia entre Tubos	St	0.012	m		
Superficie de Transferência	As	0.327228291	m ²		
Sup Fin - (NI*Nt)*(Pi.D ² /4)	Afin	3.907539895	m ²		
Temperatura do Fluido	Ti	45	*C		
Temperatura Média	Tm	60	°C		
Temperatura da Superfície	Ts	78	°C		
Prandt Fluido	Pr	0.7202			
Prandt da Superfície	Prs	0.7177			
Densidade	ρ	1.109	kg/m ³		
Calor Específico	Ср	1007	J/kg.K		
Condutividade Térmica	К	0.02699	W/m.K		
Difusividade Térmica	α	0.00002416	m²/s		
Viscosidade Dinâmica	μ	0.00001941	kg/m.s		
Viscosidade Cinemática	v	0.0000175	m²/s		
Densidade	ρ	1.059	kg/m ³		
Calor Específico	Ср	1007	J/kg.K		
Condutividade Térmica	К	0.02808	W/m.K		
Difusividade Térmica	α	0.00002632	m²/s		
Viscosidade Dinâmica	μ	0.00002008	kg/m.s		
Viscosidade Cinemática	v	0.00001896	m²/s		
Densidade	ρ	1.028	kg/m ³		
Calor Específico	Ср	1007	J/kg.K		
Condutividade Térmica	К	0.02881	W/m.K		
Difusividade Térmica	α	0.0000278	m²/s		
Viscosidade Dinâmica	μ	0.00002052	kg/m.s		
Viscosidade Cinemática	v	0.00001995	m²/s		
Fator Correção Nu	F	0.8]		
P		/#2-#1)/(T1-#1)	1		
R		(T1-T2)/(t2-t1)	1		
E (Gráfico - Plan2)		1	1		

	Velocidade	Velocidade	Velocidade	Número de	Nusselt	Nuccelt	Coeficiente de	Marca	Temperatura	Temperatura	Taxa de	Taxa de
Marcha	do	do	Máxima de	Numero de	(Arranjo	industerie in	Transferência	1910.330	Temperatura	Média	Transferência	Transferência
	Motor	Protótino	Reynolds	Reynolds	em linha)	Corrigido	de Calor	Especifica	de Saida	Logaritimica	de Calor	de Calor
	0014	110totipo	Marganorda	0.0	Cirininaj	Nu D	UC CUIOI		* .	LOGUTTITITUS	ol.	OL CUIDI
	RPM	V [m/s]	Vmax [m/s]	Re D	Nu	NuD	h	m	Io	ΔIIm	Q.	Q.
			St.V	p.Vmax.D	C (D - 1) (D - 1) ((D - (D) 10 - 25)	C 11.	Nu D.k		To (To T) and (As 10/10) Col)	(Ts-To)-(Ts-Ti)	h.As.∆TIm	h.As.Ft.ΔTIm
			(St-De)		C.(Renm).(Prn).((Pr/Prs)n0.25)	F.NU	De	p.v.Nt.St.L	1s-(1s-11).exp(-(As.H)/(m.cp))	Inf(Ts-To)/(Ts-Ti)]	ou m Cn (To-Ti)	
4	1000	1 2023565053	4 150262657	1751 001222	26 62022261	21 22261900	74 4013905	0.110955909	E1 02493643	20.99109904	0436 103047	0426 102047
1	1000	1.303433032	4.130307337	1/31.091332	20.32827201	21.22201809	74.4913693	0.115633606	31.03482042	23.00100034	5420.102047	5420.102047
1	2000	2.766911704	8.300735113	3502.182663	41.05422603	32.84338083	115.2802667	0.239711617	49.77428707	30.55070694	14914.40315	14914.40315
1	3000	4.150367557	12.45110267	5253.273995	53.00237889	42.40190311	148.8306799	0.359567425	49.15305519	30.87693641	19460.6038	19460.6038
1	4000	5 522822400	16 60147022	7004 265227	62 52408305	50 92726644	178 4027052	0.479422224	49 75950547	21.09292159	22/192 0275	22/92 0275
	5000	C 04707020104	20.25402220	0355 455550	73 43 40 23 65	50.40024.042	205.22225555	0.5000200042	10,1770,175	24.22022404	22454.00504	27454.00504
1	5000	6.91/2/9201	20.75183778	8/55.450058	73.124U2200	58.49921813	205.3322550	0.599279042	48.4770475	31.22922184	2/154.88591	2/154.88591
1	6000	8.300735113	24.90220534	10506.54799	82.02462614	65.61970091	230.3251502	0.719134851	48.26183826	31.34079594	30568.98553	30568.98553
1	7000	9.684190965	29.0525729	12257.63932	90.39007298	72.31205839	253.8153249	0.838990659	48.08975408	31.42981513	33782.30735	33782.30735
4	8000	11.06764693	22.20204045	14000 73065	09 22212292	70 65040006	276 0012290	0.059946467	47.0476742	21 50219222	26922.07916	26922-07916
1	8000	11.00704082	33.20254043	14008.73003	58.32312282	78.03649820	270.0915289	0.530040407	47.5470743	51.30516255	30852.57810	50632.57810
1	9000	12.4511026/	37.35330801	15/59.82198	105.8965357	84./1/22855	297.3574722	1.0/8/022/6	47.82752382	31.56513405	39/48.0/823	39/48.0/823
1	10000	13.83455852	41.50367557	17510.91332	113.1641777	90.53134213	317.7650109	1.198558084	47.72401069	31.61844036	42547.70708	42547.70708
1	11000	15 21801437	45 65404312	19262 00465	120 1673167	96 13385333	337 4298252	1 318413893	47 6334956	31.66500256	45247 29656	45247 29656
-	12000	16 60142022	40.90441069	21012 00508	136 02944	101 550753	256 4421206	1 439360701	47 55 22 78 20	21 70617693	47950.01756	47950 01756
1	12000	10.00147025	43.00441000	21015.05556	120.33044	101.330732	330.4431330	1.430209701	47.33337835	51.70017082	47835.01730	47833.01730
1	13000	17.98492608	53.95477824	22764.18731	133.5036944	106.8029555	374.8783737	1.55812551	47.48174275	31.74296121	50392.68135	50392.68135
2	1000	1.963108149	5.889324448	2484.778721	33.07163698	26.45730958	92.86515664	0.170074032	50.3652555	30.23808241	11891.50119	11891.50119
2	2000	3 926216299	11 7786489	4969 557443	51 18050767	40 94440613	143 7148655	0.340148063	49 23347303	30.83484243	18766 0586	18766 0586
-	2000	5.0000004440	47.00707034	7454.0004.04	66.03534345	52.00000222	405 540500	0.540333005	10 57705005	24.42400004	24455 44000	24455 44000
2	3000	5.889324448	17.00/9/334	7454.330104	66.0/5/4/15	52.80059772	185.540098	0.510222095	48.67796805	31.1248061	24455.44008	24455.44008
2	4000	7.852432598	23.55729779	9939.114886	79.20516202	63.36412961	222.4080949	0.680296126	48.32600688	31.30755681	29486.91984	29486.91984
2	5000	9.815540747	29.44662224	12423.89361	91.16052022	72.92841618	255.9787408	0.850370158	48.07513011	31.4373721	34078.44546	34078.44546
2	6000	11 7786489	35 33594660	14908 67222	102 2565132	81 80521057	287 1362891	1.020444189	47 88356808	31 53624705	38346 67689	38346 67699
-	2000	12 74175705	41 33537111	17202 45105	113 6953408	00.14937000	216 4204624	1 100519324	47 73061367	21.61500222	42262 101/7	43363 10147
4	7000	13.74175705	+1.2252/114	1/593.45105	112.0853498	50.1482/988	510.4204024	1.190518221	4/./305130/	31.01009332	42503.1914/	+2303.1914/
2	8000	15.7048652	47.11459559	19878.22977	122.575136	98.06010884	344.190982	1.360592253	47.60422625	31.68004907	46175.85809	46175.85809
2	9000	17.66797334	53.00392003	22363.00849	132.0165786	105.6132629	370.7025526	1.530666284	47.49748726	31.73487902	49818.66268	49818.66268
2	10000	19.631081/9	58 89324449	24847 78721	141 0768299	112 8614629	396 1437382	1 700740316	47 40556989	31 78204345	53316.82192	53316 82192
-	10000	15.05100145	50.0552-4440	24047.70721	141.0700233	111.0014035	350.2457 505	1.700740310	47.40330303	51.70104545	55510.01155	55510.01155
2	11000	21.59418964	04.78256893	2/332.56594	149.80/3369	119.8458695	420.6590021	1.8/0814347	47.32522578	31.82323027	56689.69107	56689.69107
2	12000	23.55729779	70.67189338	29817.34466	158.2486002	126.5988802	444.3620694	2.040888379	47.25413544	31.859643	59952.53169	59952.53169
2	13000	25.52040594	76.56121783	32302.12338	166.4332156	133.1465725	467.3444694	2.21096241	47.19059026	31.89216703	63117.64395	63117.64395
2	1000	2 445052722	7 22516117	2004 205001	27.07216261	20 20172000	106 6209764	0.011907405	40.08004033	20 44211401	12747 51146	12747 51146
3	1000	2.443033723	7.55510117	3034.753031	37.57710301	30.36173065	100.05587.34	0.21182/423	43.38004322	30.44211401	13/4/.31140	13/47.31140
3	2000	4.89010/44/	14.6/032234	6189.590183	58.77212896	4/.01//031/	165.0321381	0.42365485	48.92368627	30.99677836	21662.806//	21662.80677
3	3000	7.33516117	22.00548351	9284.385274	75.87678414	60.70142731	213.0620099	0.635482275	48.40639221	31.26588304	28210.21267	28210.21267
3	4000	9 780214893	29 34064468	12379 18037	90 95368937	72 7629515	255 3979597	0.8473097	48 07903739	31 43535313	33998 94248	33998 94248
2	5000	10.00000000	36.67500505	15472.07546	104 6933907	02 74501170	202.0491504	1.050127125	47.94599501	21 5556721	20290 52242	20290 57242
3	3000	12.22520602	30.07380383	13475.57340	104.0625657	65.74351176	255.5461304	1.03915/125	47.04300301	51.3330/21	33200.37243	33200.37243
3	6000	14.67032234	44.01096702	18568.77055	117.424255	93.93940397	329.7273079	1.27096455	47.66795951	31.64727939	44189.68844	44189.68844
3	7000	17.11537606	51.34612819	21663.56564	129.4000043	103.5200034	363.3552121	1.482791974	47.52586391	31.72030877	48808.83503	48808.83503
3	8000	19 56042979	58 68128936	24758 36073	140 7567457	112 6053966	395 2449419	1 694619399	47 40866096	31 78045815	53193 19986	53193 19986
2	0000	22.00549251	66.01645052	22052 15502	161 6096406	121 2790124	425 6990924	1.006446934	47 20062096	21 921 221	57301 05619	57391 05619
3	5000	22.003465331	00.010+3035	27033.13302	131.3560403	121.2/03124	423.0003024	1.900440624	47.30302380	51.051221	37301.93010	3/301.53010
3	10000	24.45053723	/3.351611/	30947.95091	162.0028018	129.6022414	454.9038674	2.1182/4249	4/.2243/1/4	31.87487963	61404.1641/	61404.1641/
3	11000	26.89559096	80.68677287	34042.746	172.0283078	137.6226462	483.0554882	2.330101674	47.14986479	31.91299946	65282.12568	65282.12568
3	12000	29 34064468	88 02193404	37137 5411	181 7216664	145 3773331	510 2744392	2 541929099	47 08395199	31 94669642	69033 42336	69033 42336
-	42000	24.7056004	05.05200504	400000.000040	404.4202004	453.0003463	526.005.0006	0.00000000	47.02504404	24.02(20422	20(22) 22(4	70070.0004
3	13000	31.7830984	95.35709521	40232.33619	191.1203084	152.8902407	530.005820	2.753/50524	47.02504491	31.9/0/9133	/20/2.2204	/20/2.2204
4	1000	2.822332043	8.466996128	3572.330239	41.57037449	33.25629959	116.7296116	0.244512962	49.74202071	30.56771108	15110.31792	15110.31792
4	2000	5.644664085	16.93399226	7144.660478	64.33285632	51.46628506	180.6466606	0.489025925	48.73274324	31.09629803	23788.56634	23788.56634
4	3000	8.466996128	25 40098838	10716 99072	83.05586915	66.44469532	233 2208806	0 733538887	48 23920217	31 35251555	30964.8845	30964 8845
	4000	44.000000110	23.400000050	44200.220072	00.0000010	20.044403332	230.5524404	0.030054040	40.2332.0054	34.54230433	22200 0450	22200.0450
4	4000	11.28932817	33.86798451	14289.32090	99.55927638	/9.04/42111	279.3024481	0.978051849	47.92/10904	31.513/91//	3/308.0159	37308.0159
4	5000	14.11166021	42.33498064	17861.65119	114.5869183	91.66953462	321.7600665	1.222564812	47.70493531	31.62825691	43096.00794	43096.00794
4	6000	16.93399226	50.80197677	21433.98143	128.5343556	102.8274845	360.9244705	1.467077774	47.53544725	31.71538707	48474.79554	48474.79554
4	7000	19 7563243	59 2689729	25006 31167	141 643191	113 3145528	397 7340802	1 711590736	47 4001 2693	31 78483483	53535 56694	53535 56694
4	8000	22.52965624	67 73506000	20520 64101	164.0344600	122 2505 607	422 6410592	1.056103608	47 3995 3603	21.94202500	E0220 07710	50330 07710
*	8000	46.37003034	07.73390902	10.04191	134.0744305	443.439300/	+32.0+1038Z	* 230102038	47.20033032	31.04202359	30330.07719	50330.07719
4	9000	25.40098838	/6.20296515	32150.97215	165.942152	132./53/216	465.9655627	∠.200b1bb61	47.19426572	31.89028645	02927.70356	o2927.70356
4	10000	28.22332043	84.66996128	35723.30239	177.3307034	141.8645628	497.9446153	2.445129623	47.11311811	31.93178865	67333.92457	67333.92457
4	11000	31.04565247	93.13695741	39295.63263	188.3047731	150.6438185	528,7598028	2.689642585	47.04221285	31.96802243	71582.0027?	71582.00272
Å	12000	22.96709451	101 6020525	42867 96297	198 915 269 2	150 1222154	558 5540750	2 02/1555/9	46.97949367	32.00004969	75601 222/9	75601 22249
-	420000	25.00730431	440.0000005555	40440.20207	200.2024644	407.0000010	507.44240.55	2.334233340	40.0704050	32.00004300	70077742240	2002242240
4	13000	30.69031655	110.0709497	40440.29311	209.2031641	107.3625313	587.44Z4849	3.1/866851	46.92344662	32.02865139	/96//.12343	/96//.12343
5	1000	3.149423505	9.448270514	3986.342022	44.54371146	35.63496917	125.0787418	0.272850557	49.56718303	30.65973412	16239.83191	16239.83191
5	2000	6.298847009	18.89654103	7972.684043	68.93428853	55.14743083	193.5674822	0.545701115	48.59272276	31.16913654	25549.75937	25549.75937
5	3000	9 448270514	28 34481154	11959 02606	88 99647203	71 19717762	249 9020925	0.818551672	48 11669658	31 41588925	33246 72669	33246 72669
5	4000	13 50760402	27 20209200	15045 36900	105 6903019	95 24422242	200.5592502	1.001402222	47.91594107	21 57115205	40040 90505	40040 90500
5	4000	12.59709402	57.79908206	13945.30809	100.0802918	03.34423343	259.0082093	1.091402229	47.81584197	31.57115296	40049.89506	40049.89506
5	5000	15.74711752	47.24135257	19931.71011	122.7827915	98.22623323	344.7740786	1.364252786	47.60174345	31.68132518	46255.94814	46255.94814
5	6000	18.89654103	56.68962308	23918.05213	137.7278247	110.1822597	386.7397317	1.637103344	47.43845811	31.76517343	52023.51162	52023.51162
5	7000	22.04596453	66.1378936	27904.39415	151,7742745	121.4194196	426.1821628	1.909953901	47.30811603	31.83199655	57449.83554	57449.83554
5	8000	25 10539904	75 59616414	21990 72617	165.0946851	132 0757494	462 5959757	2 192904459	47 20054849	21 99702049	62500.01007	62500 01007
5	0000	20.2440445	73.36010411	31030.73017	103.0940031	442 240005	+03.3030757	2.102004438	47.20004045	31.00702048	(2000,000)	62373.71397
5	9000	28.34481154	85.03443462	358/7.07819	1/7.811228	142.2489824	499.2939282	2.455655015	47.10987205	31.93344806	6/519.89233	0/519.89233
5	10000	31.49423505	94.48270514	39863.42022	190.01435	152.01148	533.5602948	2.728505573	47.03174154	31.97337107	72243.96498	72243.96498
5	11000	34.64365855	103.9309757	43849.76224	201.7733442	161.4186753	566.5795504	3.00135613	46.96347924	32.00822387	76798.38956	76798.38956
5	12000	37 70209206	112 2702452	47836 10436	212 1/22501	170 51/2091	508 5048702	3 27/206687	46 90210208	22.02002972	91202 95072	91202 95022
	42000	40.04050555	422.02354.55	54032 44655	223.1427001	470.0142081	000.0046703	3.2.74200087	40.00010006	32.03302073	05403.03973	05477.04677
5	13000	40.94250556	122.8275167	51822.44628	224.1665006	1/9.3332005	029.4595338	3.54/05/245	46.8491539	32.06653/41	854/7.049/8	85477.04978
6	1000	3.474432506	10.42329752	4397.717956	47.38683184	37.90946547	133.0622238	0.301007738	49.41563406	30.73934319	17321.24094	17321.24094
6	2000	6.948865011	20.84659503	8795.435912	73.33420211	58.66736169	205.9224395	0.602015476	48.47151079	31.23209577	27235.44302	27235.44302
6	2000	10.42229752	21 26090255	12102 15297	94.67690761	75 7/152600	265.9527566	0.902022214	48.01071241	21.47064522	25420 42222	25420 42272
0	3000	40.92227/02	31.20303233	43133.1338/	54.0/050/01	73.74132009	203.032/300	4 20402005	40.010/1241	31.47004322	J3430.432/2	40/20.43272
6	4000	13.89773002	41.69319007	17590.87182	113.489444	90.79155521	318.6783588	1.204030952	47.71961729	31.62070147	42673.05285	42673.05285
6	5000	17.37216253	52.11648758	21988.58978	130.6197285	104.4957828	366.7801975	1.50503869	47.51252707	31.72715726	49279.54428	49279.54428
6	6000	20.84659503	62.5397851	26386.30774	146.5186679	117.2149343	411.4244195	1.806046428	47.35462173	31.80816525	55418.95417	55418.95417
6	7000	24 32102754	72 96308262	30784 02569	161 4616696	129 1693357	453 3843682	2 107054166	47 22859581	31 87271755	61194 90689	61194 90699
	,000	27.344047.34	02.200000002	25404 24205	475 022007	440 5050357	402.4254255	2.4000004000	47.42420424	31.07171733	51154.50000	
D	8000	27.79540004	o3.38038013	53181.74365	1/5.6322907	140.505832b	435.1/54/25	<7-409001302	47.124/0134	31.92580077	000/0.00004	000/0.00054
6	9000	31.26989255	93.80967765	39579.46161	189.1605007	151.3284005	531.1626859	2.709069643	47.03695311	31.97070913	71913.34154	71913.34154
6	10000	34.74432506	104.2329752	43977.17956	202.1425192	161.7140154	567.616194	3.010077381	46.96143632	32.00926653	76941.41018	76941.41018
6	11000	38.21875756	114.6562777	48374.89752	214.6520624	171.7216499	602,7429911	3.311085119	46.89546319	32.04292529	81788.82477	81788.82477
6	12000	41 69219007	125.0795702	52772 61542	226 7471614	191 2077204	626 7060201	3 612092957	46 82711604	22.07267222	96477 6272	86477 6272
U	12000	-1.0351300/	123.0133102	J2/12.0134/	220.7471014	101.35/1291	030.7000291	2.01203205/	40.03/11004	32.0/20/332	304/1.02/2	J04/7.02/2

Anexo C – Padrão de Fluxo do Sistema de Arrefecimento